Cargando…

Quantitative Analysis of the Effectiveness of Antigen- and Polymerase Chain Reaction-Based Combination Strategies for Containing COVID-19 Transmission in a Simulated Community

The number of coronavirus disease 2019 (COVID-19) cases continues to surge, overwhelming healthcare systems and causing excess mortality in many countries. Testing of infectious populations remains a key strategy to contain the COVID-19 outbreak, delay the exponential spread of the disease, and flat...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Qiangru, Sun, Yanxia, Jia, Mengmeng, Zhang, Ting, Chen, Fangyuan, Jiang, Mingyue, Wang, Qing, Feng, Luzhao, Yang, Weizhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918319/
https://www.ncbi.nlm.nih.gov/pubmed/36819830
http://dx.doi.org/10.1016/j.eng.2023.01.004
Descripción
Sumario:The number of coronavirus disease 2019 (COVID-19) cases continues to surge, overwhelming healthcare systems and causing excess mortality in many countries. Testing of infectious populations remains a key strategy to contain the COVID-19 outbreak, delay the exponential spread of the disease, and flatten the epidemic curve. Using the Omicron variant outbreak as a background, this study aimed to evaluate the effectiveness of testing strategies with different test combinations and frequencies, analyze the factors associated with testing effectiveness, and optimize testing strategies based on these influencing factors. We developed a stochastic, agent-based, discrete-time susceptible–latent–infectious–recovered model simulating a community to estimate the association between three levels of testing strategies and COVID-19 transmission. Antigen testing and its combination strategies were more efficient than polymerase chain reaction (PCR)-related strategies. Antigen testing also showed better performance in reducing the demand for hospital beds and intensive care unit beds. The delay in the turnaround time of test results had a more significant impact on the efficiency of the testing strategy compared to the detection limit of viral load and detection-related contacts. The main advantage of antigen testing strategies is the short turnaround time, which is also a critical factor to be optimized to improve PCR strategies. After modifying the turnaround time, the strategies with less frequent testing were comparable to daily testing. The choice of testing strategy requires consideration of containment goals, test efficacy, community prevalence, and economic factors. This study provides evidence for the selection and optimization of testing strategies in the post-pandemic era and provides guidance for optimizing healthcare resources.