Cargando…
Survival study on deep learning techniques for IoT enabled smart healthcare system
PURPOSE: The paper is to study a review of the employment of deep learning (DL) techniques inside the healthcare sector, together with the highlight of the strength and shortcomings of existing methods together with several research ultimatums. Our study lays the foundation for healthcare profession...
Autores principales: | Munnangi, Ashok Kumar, UdhayaKumar, Satheeshwaran, Ravi, Vinayakumar, Sekaran, Ramesh, Kannan, Suthendran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918340/ https://www.ncbi.nlm.nih.gov/pubmed/36818549 http://dx.doi.org/10.1007/s12553-023-00736-4 |
Ejemplares similares
-
Smart healthcare analytics in IoT enabled environment
por: Pattnaik, Prasant Kumar, et al.
Publicado: (2020) -
Blockchain and smart contract for IoT enabled smart agriculture
por: Pranto, Tahmid Hasan, et al.
Publicado: (2021) -
Survey on Sensors and Smart Devices for IoT Enabled Intelligent Healthcare System
por: Chopade, Swati Sandeep, et al.
Publicado: (2023) -
IoT-Enabled Smart Cities: Evolution and Outlook
por: Bauer, Martin, et al.
Publicado: (2021) -
CovMnet–Deep Learning Model for classifying Coronavirus (COVID-19)
por: Jawahar, Malathy, et al.
Publicado: (2022)