Cargando…
Fluctuation-based outlier detection
Outlier detection is an important topic in machine learning and has been used in a wide range of applications. Outliers are objects that are few in number and deviate from the majority of objects. As a result of these two properties, we show that outliers are susceptible to a mechanism called fluctu...
Autores principales: | Du, Xusheng, Zuo, Enguang, Chu, Zheng, He, Zhenzhen, Yu, Jiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918462/ https://www.ncbi.nlm.nih.gov/pubmed/36765095 http://dx.doi.org/10.1038/s41598-023-29549-1 |
Ejemplares similares
-
A novel subspace outlier detection method by entropy-based clustering algorithm
por: Zuo, Zheng, et al.
Publicado: (2023) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007) -
Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm
por: Yang, Dexian, et al.
Publicado: (2022) -
Subgroup and outlier detection analysis
por: Wu, Gang, et al.
Publicado: (2013) -
Outlier detection in BLAST hits
por: Shah, Nidhi, et al.
Publicado: (2018)