Cargando…

Multi-responsive chitosan-based hydrogels for controlled release of vincristine

As medical research progresses, the derivation and development of biological materials such as hydrogels have steadily gained more interest. The biocompatibility and non-toxicity of chitosan make chitosan hydrogels potential carriers for drug delivery. This work aims to develop two multi-reactive, s...

Descripción completa

Detalles Bibliográficos
Autores principales: Farasati Far, Bahareh, Omrani, Mohsen, Naimi Jamal, Mohammad Reza, Javanshir, Shahrzad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918727/
https://www.ncbi.nlm.nih.gov/pubmed/36765265
http://dx.doi.org/10.1038/s42004-023-00829-1
Descripción
Sumario:As medical research progresses, the derivation and development of biological materials such as hydrogels have steadily gained more interest. The biocompatibility and non-toxicity of chitosan make chitosan hydrogels potential carriers for drug delivery. This work aims to develop two multi-reactive, safe, and highly swellable bio-hydrogels consisting of chitosan-graft-glycerol (CS-g-gly) and carboxymethyl chitosan-graft-glycerol (CMCS-g-gly), for sustained and controlled drug release, improved bioavailability along with entrapment in nanocarriers, which reduces side effects of vincristine sulphate. CS-g-gly and CMCS-g-gly are successfully prepared and fully characterized using analytical techniques. Under various conditions, the prepared hydrogels exhibit a high swelling ratio. Vincristine-loaded CS-g-gly (VCR/CS-g-gly), and CMCS-g-gly (VCR/CMCS-g-gly) show high encapsulation efficiency between 72.28-89.97%, and 56.97-71.91%, respectively. VCR/CS-g-gly show a sustained release behavior, and the maximum release of VCR from hydrogels reached 82% after 120 h of incubation. MCF-7 (breast cancer cell line) and MCF-10 (normal breast cell line) are evaluated for cell viability and apoptosis induction. The in-vitro anti-tumor efficacy is investigated using flow cytometry. The tetrazolium-based MTT assay of hydrogels shows no evidence of significant cytotoxicity in MCF-7 and MCF-10 cells. According to these findings, these hydrogels can effectively deliver drugs to MCF-7 and other breast cancer cells.