Cargando…

Plasmonic field-regulating characteristics of alloy-based multilaminar films in 300–800 nm

Based on a petal-like microstructure model of alloy particles we proposed, the field-regulating characteristics of alloy-based metamaterial films in the wavelength range of 300–800 nm are analyzed. It is found that Au/Ag alloy particles can support a broader resonance band with higher averaged reson...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Yifan, Yang, Hongtao, Wang, Chao, Li, Yongfeng, Xu, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918773/
https://www.ncbi.nlm.nih.gov/pubmed/36785831
http://dx.doi.org/10.1016/j.heliyon.2023.e13084
Descripción
Sumario:Based on a petal-like microstructure model of alloy particles we proposed, the field-regulating characteristics of alloy-based metamaterial films in the wavelength range of 300–800 nm are analyzed. It is found that Au/Ag alloy particles can support a broader resonance band with higher averaged resonance intensities than that of pure silver or gold particles, which, named alloy plasmonic effect, proves to be a universal feature of alloy-based plasmonics. Upon optimizing the coupling interaction between the alloy plasmonic effect and absorption saturation effect within alloy-based multilaminar structures, a broadband electromagnetic wave absorber consisting of a Cu/Al alloy-based composites layer and an aluminum base layer is demonstrated. Furthermore, a generalized method is proposed to evaluate the absorption performance of this kind of plasmonic absorber. The achieved alloy-based absorber proves to be nearly non-iridescent and the quality factor AP throughout the range of 300–800 nm remains higher than 0.8 even if the incident angle increases up to 60°.