Cargando…

Formation and Characterization of the Recast Layer Formed on Inconel 718 during Wire Electro Discharge Machining

The present work investigates the formation and microstructural and micro-mechanical characterization of the recast layer that formed on Inconel 718 alloy in the course of the wire electro-discharge machining (WEDM). The as-machined surface contains globules, shallow cracks, and re-deposition of mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Alkahlan, Bandar, Tabbakh, Thamer, Kurdi, Abdulaziz, Pramanik, Alokesh, Basak, Animesh K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918936/
https://www.ncbi.nlm.nih.gov/pubmed/36769937
http://dx.doi.org/10.3390/ma16030930
Descripción
Sumario:The present work investigates the formation and microstructural and micro-mechanical characterization of the recast layer that formed on Inconel 718 alloy in the course of the wire electro-discharge machining (WEDM). The as-machined surface contains globules, shallow cracks, and re-deposition of molten materials, together with the elements from the decomposition of wire electrode and electrolyte, which does not exceed beyond the surface of the recast layer. Under presently investigated machining parameters, the recast layer was about 6.2 ± 2.1 µm thick. There was no presence of a heat-affected zone (HAZ), as otherwise indicated for other hard-to-cut materials. The transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) investigations show that the microstructure of the recast layer is similar to that of bulk alloy. Micro-mechanical characterizations of the recast layer were investigated via in-situ micro-pillar compression on the micro-pillars fabricated on the recast layer. The strength of the superficial layer (1151.6 ± 51.1 MPa) was about 2.2 times higher than that of the base material (523.2 ± 22.1 MPa), as revealed by the in-situ micro-pillar compression.