Cargando…

Regulation of Intersubunit Interactions in Homotetramer of Glyceraldehyde-3-Phosphate Dehydrogenases upon Its Immobilization in Protein—Kappa-Carrageenan Gels

Polysaccharides, being biocompatible and biodegradable polymers, are highly attractive as materials for protein delivery systems. However, protein–polysaccharide interactions may lead to protein structural transformation. In the current study, we analyze the structural adjustment of a homotetrameric...

Descripción completa

Detalles Bibliográficos
Autores principales: Makshakova, Olga, Antonova, Maria, Bogdanova, Liliya, Faizullin, Dzhigangir, Zuev, Yuriy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918977/
https://www.ncbi.nlm.nih.gov/pubmed/36771978
http://dx.doi.org/10.3390/polym15030676
Descripción
Sumario:Polysaccharides, being biocompatible and biodegradable polymers, are highly attractive as materials for protein delivery systems. However, protein–polysaccharide interactions may lead to protein structural transformation. In the current study, we analyze the structural adjustment of a homotetrameric protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), upon its interactions with both flexible coil chain and the rigid helix of κ-carrageenan. FTIR spectroscopy was used to probe the secondary structures of both protein and polysaccharide. Electrostatically driven protein–polysaccharide interactions in dilute solutions resulted in an insoluble complex formation with a constant κ-carrageenan/GAPDH ratio of 0.2, which amounts to 75 disaccharide units per mole of protein tetramer. Upon interactions with both coiled and helical polysaccharides, a weakening of the intersubunit interactions was revealed and attributed to a partial GAPDH tetramer dissociation. In turn, protein distorted the helical conformation of κ-carrageenan when co-gelled. Molecular modeling showed the energy favorable interactions between κ-carrageenan and GAPDH at different levels of oligomerization. κ-Carrageenan binds in the region of the NAD-binding groove and the S-loop in OR contact, which may stabilize the OP dimers. The obtained results highlight the mutual conformational adjustment of oligomeric GAPDH and κ-carrageenan upon interaction and the stabilization of GAPDH’s dissociated forms upon immobilization in polysaccharide gels.