Cargando…

Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis

Among machine learning (ML) studies, artificial neural network (ANN) analysis is the most widely used technique in pyrolysis research. In this work, the pyrolysis of polypropylene (PP) polymers was established using a thermogravimetric analyzer (TGA) with five sets of heating rates (5–40 K min(−1))....

Descripción completa

Detalles Bibliográficos
Autor principal: Dubdub, Ibrahim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918981/
https://www.ncbi.nlm.nih.gov/pubmed/36771796
http://dx.doi.org/10.3390/polym15030494
_version_ 1784886710828531712
author Dubdub, Ibrahim
author_facet Dubdub, Ibrahim
author_sort Dubdub, Ibrahim
collection PubMed
description Among machine learning (ML) studies, artificial neural network (ANN) analysis is the most widely used technique in pyrolysis research. In this work, the pyrolysis of polypropylene (PP) polymers was established using a thermogravimetric analyzer (TGA) with five sets of heating rates (5–40 K min(−1)). TGA data was used to exploit an ANN network by achieving a feed-forward backpropagation optimization technique in order to predict the weight-left percentage. Two important ANN model input variables were identified as the heating rate (K min(−1)) and temperature (K). For the range of TGA values, a 2-10-10-1 network with two hidden layers (Logsig-Tansig) was concluded to be the best structure for predicting the weight-left percentage. The ANN demonstrated a good agreement between the experimental and calculated values, with a high correlation coefficient (R) of greater than 0.9999. The final network was then simulated with the new input data set for effective performance. In addition, a sensitivity analysis was performed to identify the uncertainties associated with the relationship between the output and input parameters. Temperature was found to be a more sensitive input parameter than the heating rate on the weight-left percentage calculation.
format Online
Article
Text
id pubmed-9918981
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99189812023-02-12 Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis Dubdub, Ibrahim Polymers (Basel) Article Among machine learning (ML) studies, artificial neural network (ANN) analysis is the most widely used technique in pyrolysis research. In this work, the pyrolysis of polypropylene (PP) polymers was established using a thermogravimetric analyzer (TGA) with five sets of heating rates (5–40 K min(−1)). TGA data was used to exploit an ANN network by achieving a feed-forward backpropagation optimization technique in order to predict the weight-left percentage. Two important ANN model input variables were identified as the heating rate (K min(−1)) and temperature (K). For the range of TGA values, a 2-10-10-1 network with two hidden layers (Logsig-Tansig) was concluded to be the best structure for predicting the weight-left percentage. The ANN demonstrated a good agreement between the experimental and calculated values, with a high correlation coefficient (R) of greater than 0.9999. The final network was then simulated with the new input data set for effective performance. In addition, a sensitivity analysis was performed to identify the uncertainties associated with the relationship between the output and input parameters. Temperature was found to be a more sensitive input parameter than the heating rate on the weight-left percentage calculation. MDPI 2023-01-18 /pmc/articles/PMC9918981/ /pubmed/36771796 http://dx.doi.org/10.3390/polym15030494 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dubdub, Ibrahim
Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis
title Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis
title_full Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis
title_fullStr Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis
title_full_unstemmed Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis
title_short Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis
title_sort artificial neural network study on the pyrolysis of polypropylene with a sensitivity analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918981/
https://www.ncbi.nlm.nih.gov/pubmed/36771796
http://dx.doi.org/10.3390/polym15030494
work_keys_str_mv AT dubdubibrahim artificialneuralnetworkstudyonthepyrolysisofpolypropylenewithasensitivityanalysis