Cargando…
Estimation of Degradation Degree in Road Infrastructure Based on Multi-Modal ABN Using Contrastive Learning
This study presents a method for distress image classification in road infrastructures introducing self-supervised learning. Self-supervised learning is an unsupervised learning method that does not require class labels. This learning method can reduce annotation efforts and allow the application of...
Autores principales: | Higashi, Takaaki, Ogawa, Naoki, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919028/ https://www.ncbi.nlm.nih.gov/pubmed/36772694 http://dx.doi.org/10.3390/s23031657 |
Ejemplares similares
-
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
por: Ogawa, Naoki, et al.
Publicado: (2022) -
Brain Decoding of Multiple Subjects for Estimating Visual Information Based on a Probabilistic Generative Model
por: Higashi, Takaaki, et al.
Publicado: (2022) -
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Manipulation Direction: Evaluating Text-Guided Image Manipulation Based on Similarity between Changes in Image and Text Modalities
por: Watanabe, Yuto, et al.
Publicado: (2023) -
Rubber Material Property Prediction Using Electron Microscope Images of Internal Structures Taken under Multiple Conditions
por: Togo, Ren, et al.
Publicado: (2021)