Cargando…
Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization
Over the past few years, significant investments in smart traffic monitoring systems have been made. The most important step in machine learning is detecting and recognizing objects relative to vehicles. Due to variations in vision and different lighting conditions, the recognition and tracking of v...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919067/ https://www.ncbi.nlm.nih.gov/pubmed/36772768 http://dx.doi.org/10.3390/s23031731 |
_version_ | 1784886732300222464 |
---|---|
author | Wieczorek, Grzegorz Tahir, Sheikh Badar ud din Akhter, Israr Kurek, Jaroslaw |
author_facet | Wieczorek, Grzegorz Tahir, Sheikh Badar ud din Akhter, Israr Kurek, Jaroslaw |
author_sort | Wieczorek, Grzegorz |
collection | PubMed |
description | Over the past few years, significant investments in smart traffic monitoring systems have been made. The most important step in machine learning is detecting and recognizing objects relative to vehicles. Due to variations in vision and different lighting conditions, the recognition and tracking of vehicles under varying extreme conditions has become one of the most challenging tasks. To deal with this, our proposed system presents an adaptive method for robustly recognizing several existing automobiles in dense traffic settings. Additionally, this research presents a broad framework for effective on-road vehicle recognition and detection. Furthermore, the proposed system focuses on challenges typically noticed in analyzing traffic scenes captured by in-vehicle cameras, such as consistent extraction of features. First, we performed frame conversion, background subtraction, and object shape optimization as preprocessing steps. Next, two important features (energy and deep optical flow) were extracted. The incorporation of energy and dense optical flow features in distance-adaptive window areas and subsequent processing over the fused features resulted in a greater capacity for discrimination. Next, a graph-mining-based approach was applied to select optimal features. Finally, the artificial neural network was adopted for detection and classification. The experimental results show significant performance in two benchmark datasets, including the LISA and KITTI 7 databases. The LISA dataset achieved a mean recognition rate of 93.75% on the LDB1 and LDB2 databases, whereas KITTI attained 82.85% accuracy on separate training of ANN. |
format | Online Article Text |
id | pubmed-9919067 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99190672023-02-12 Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization Wieczorek, Grzegorz Tahir, Sheikh Badar ud din Akhter, Israr Kurek, Jaroslaw Sensors (Basel) Article Over the past few years, significant investments in smart traffic monitoring systems have been made. The most important step in machine learning is detecting and recognizing objects relative to vehicles. Due to variations in vision and different lighting conditions, the recognition and tracking of vehicles under varying extreme conditions has become one of the most challenging tasks. To deal with this, our proposed system presents an adaptive method for robustly recognizing several existing automobiles in dense traffic settings. Additionally, this research presents a broad framework for effective on-road vehicle recognition and detection. Furthermore, the proposed system focuses on challenges typically noticed in analyzing traffic scenes captured by in-vehicle cameras, such as consistent extraction of features. First, we performed frame conversion, background subtraction, and object shape optimization as preprocessing steps. Next, two important features (energy and deep optical flow) were extracted. The incorporation of energy and dense optical flow features in distance-adaptive window areas and subsequent processing over the fused features resulted in a greater capacity for discrimination. Next, a graph-mining-based approach was applied to select optimal features. Finally, the artificial neural network was adopted for detection and classification. The experimental results show significant performance in two benchmark datasets, including the LISA and KITTI 7 databases. The LISA dataset achieved a mean recognition rate of 93.75% on the LDB1 and LDB2 databases, whereas KITTI attained 82.85% accuracy on separate training of ANN. MDPI 2023-02-03 /pmc/articles/PMC9919067/ /pubmed/36772768 http://dx.doi.org/10.3390/s23031731 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wieczorek, Grzegorz Tahir, Sheikh Badar ud din Akhter, Israr Kurek, Jaroslaw Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization |
title | Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization |
title_full | Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization |
title_fullStr | Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization |
title_full_unstemmed | Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization |
title_short | Vehicle Detection and Recognition Approach in Multi-Scale Traffic Monitoring System via Graph-Based Data Optimization |
title_sort | vehicle detection and recognition approach in multi-scale traffic monitoring system via graph-based data optimization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919067/ https://www.ncbi.nlm.nih.gov/pubmed/36772768 http://dx.doi.org/10.3390/s23031731 |
work_keys_str_mv | AT wieczorekgrzegorz vehicledetectionandrecognitionapproachinmultiscaletrafficmonitoringsystemviagraphbaseddataoptimization AT tahirsheikhbadaruddin vehicledetectionandrecognitionapproachinmultiscaletrafficmonitoringsystemviagraphbaseddataoptimization AT akhterisrar vehicledetectionandrecognitionapproachinmultiscaletrafficmonitoringsystemviagraphbaseddataoptimization AT kurekjaroslaw vehicledetectionandrecognitionapproachinmultiscaletrafficmonitoringsystemviagraphbaseddataoptimization |