Cargando…
Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD
In light of the problems of a single vibration feature containing limited information on the degradation of rolling bearings, the redundant information in high-dimensional feature sets inaccurately reflecting the reliability of rolling bearings in service, and assessments of the degradation performa...
Autores principales: | Feng, Zhengjiang, Wang, Zhihai, Liu, Xiaoqin, Li, Jiahui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919083/ https://www.ncbi.nlm.nih.gov/pubmed/36772165 http://dx.doi.org/10.3390/s23031110 |
Ejemplares similares
-
Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold
por: Li, Jiahui, et al.
Publicado: (2023) -
The Robust Multi-Scale Deep-SVDD Model for Anomaly Online Detection of Rolling Bearings
por: Kou, Linlin, et al.
Publicado: (2022) -
Rolling Bearing Fault Monitoring for Sparse Time-Frequency Representation and Feature Detection Strategy
por: Tang, Jiahui, et al.
Publicado: (2022) -
A FOD Detection Approach on Millimeter-Wave Radar Sensors Based on Optimal VMD and SVDD
por: Zhong, Jun, et al.
Publicado: (2021) -
Abnormal data detection of guidance angle based on SMP-SVDD for seeker
por: Liang, Chao, et al.
Publicado: (2022)