Cargando…

Development of TiO(2) Nanosheets with High Dye Degradation Performance by Regulating Crystal Growth

TiO(2) nanosheets have been studied as photocatalysts in various fields, and their performance has been actively improved. Herein, we prepared titania nanosheets with a smaller size than those reported previously with a side length of 29 nm and investigated their photocatalytic activity. (NH(4))(2)T...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowaka, Yasuyuki, Nozaki, Kosuke, Mihara, Tomoyuki, Yamashita, Kimihiro, Miura, Hiroyuki, Tan, Zhenquan, Ohara, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919110/
https://www.ncbi.nlm.nih.gov/pubmed/36770234
http://dx.doi.org/10.3390/ma16031229
Descripción
Sumario:TiO(2) nanosheets have been studied as photocatalysts in various fields, and their performance has been actively improved. Herein, we prepared titania nanosheets with a smaller size than those reported previously with a side length of 29 nm and investigated their photocatalytic activity. (NH(4))(2)TiF(6) and Ti(OBu)(4) were used as raw materials, and the F/Ti ratio was varied in the range of 0.3 to 2.0 to produce a series of samples with different side lengths by hydrothermal synthesis. A reduction in the F/Ti ratio led to the reduced size of the titanium nanosheets. The photocatalytic activity of each sample was evaluated through the degradation of methylene blue (MB) under ultraviolet (UV) irradiation (365 nm, 2.5 mW/cm(2)). UV irradiation promoted the decomposition of MB, and the highest degradation efficiency was achieved using titania nanosheets prepared with a F/Ti ratio of 0.3. The high catalytic activity can be attributed to the increase in the surface area due to size reduction. The ratio of the {001} surface exposed on the titania nanosheet also affected the photocatalytic activity; it resulted in increased activation of the reaction. This study demonstrates that further activation of the photocatalytic activity can be achieved by adjusting the size of titania nanosheets.