Cargando…
Molecular Toxicity Virtual Screening Applying a Quantized Computational SNN-Based Framework
Spiking neural networks are biologically inspired machine learning algorithms attracting researchers’ attention for their applicability to alternative energy-efficient hardware other than traditional computers. In the current work, spiking neural networks have been tested in a quantitative structure...
Autores principales: | Nascimben, Mauro, Rimondini, Lia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919191/ https://www.ncbi.nlm.nih.gov/pubmed/36771009 http://dx.doi.org/10.3390/molecules28031342 |
Ejemplares similares
-
Polygenic risk modeling of tumor stage and survival in bladder cancer
por: Nascimben, Mauro, et al.
Publicado: (2022) -
Algorithm-Based Risk Identification in Patients with Breast Cancer-Related Lymphedema: A Cross-Sectional Study
por: Nascimben, Mauro, et al.
Publicado: (2023) -
A Software Suite for Limb Volume Analysis Applicable in Clinical Settings: Upper Limb Quantification
por: Nascimben, Mauro, et al.
Publicado: (2022) -
High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron
por: Gao, Haoran, et al.
Publicado: (2023) -
Technical aspects and validation of custom digital algorithms for hand volumetry
por: Nascimben, Mauro, et al.
Publicado: (2023)