Cargando…
Application of Feedforward and Recurrent Neural Networks for Fusion of Data from Radar and Depth Sensors Applied for Healthcare-Oriented Characterisation of Persons’ Gait
In this paper, the useability of feedforward and recurrent neural networks for fusion of data from impulse-radar sensors and depth sensors, in the context of healthcare-oriented monitoring of elderly persons, is investigated. Two methods of data fusion are considered, viz., one based on a multilayer...
Autor principal: | Mazurek, Paweł |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919234/ https://www.ncbi.nlm.nih.gov/pubmed/36772497 http://dx.doi.org/10.3390/s23031457 |
Ejemplares similares
-
AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network
por: Rahnemoonfar, Maryam, et al.
Publicado: (2019) -
Radar-Camera Fusion Network for Depth Estimation in Structured Driving Scenes
por: Li, Shuguang, et al.
Publicado: (2023) -
Ground Penetrating Radar as a Contextual Sensor for Multi-Sensor Radiological Characterisation
por: Ukaegbu, Ikechukwu K., et al.
Publicado: (2017) -
A Low-Cost Radar-Based IoT Sensor for Noncontact Measurements of Water Surface Velocity and Depth
por: Catsamas, Stephen, et al.
Publicado: (2023) -
Knowledge-Aided Structured Covariance Matrix Estimator Applied for Radar Sensor Signal Detection
por: Kang, Naixin, et al.
Publicado: (2019)