Cargando…

Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks

Two series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CH(2)OH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Havelková, Lucie, Bashta, Bogdana, Hašková, Alena, Vagenknechtová, Alice, Vyskočilová, Eliška, Brus, Jiří, Sedláček, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919244/
https://www.ncbi.nlm.nih.gov/pubmed/36772045
http://dx.doi.org/10.3390/polym15030743
_version_ 1784886775955587072
author Havelková, Lucie
Bashta, Bogdana
Hašková, Alena
Vagenknechtová, Alice
Vyskočilová, Eliška
Brus, Jiří
Sedláček, Jan
author_facet Havelková, Lucie
Bashta, Bogdana
Hašková, Alena
Vagenknechtová, Alice
Vyskočilová, Eliška
Brus, Jiří
Sedláček, Jan
author_sort Havelková, Lucie
collection PubMed
description Two series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CH(2)OH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-triethynylbenzene cross-linker followed by hydrolytic deprotection/detemplating. Deprotection not only liberates reactive CH=O and CH(2)OH groups in the networks but also modifies the texture of the networks towards higher microporosity and higher specific surface area. The final networks with CH=O and CH(2)OH groups attached directly to the polyene main chains of the networks have a specific surface area from 400 to 800 m(2)/g and contain functional groups in a high amount, up to 9.6 mmol/g. The CH=O and CH(2)OH groups in the networks serve as active centres for the reversible capture of CO(2) and water vapour. The water vapour capture capacities of the networks (up to 445 mg/g at 297 K) are among the highest values reported for porous polymers, making these materials promising for cyclic water harvesting from the air. Covalent modification of the networks with (R)-(+)-3-aminopyrrolidine and (S)-(+)-2-methylbutyric acid enables the preparation of porous chiral networks and shows networks with CH=O and CH(2)OH groups as reactive supports suitable for the anchoring of various functional molecules.
format Online
Article
Text
id pubmed-9919244
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99192442023-02-12 Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks Havelková, Lucie Bashta, Bogdana Hašková, Alena Vagenknechtová, Alice Vyskočilová, Eliška Brus, Jiří Sedláček, Jan Polymers (Basel) Article Two series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CH(2)OH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-triethynylbenzene cross-linker followed by hydrolytic deprotection/detemplating. Deprotection not only liberates reactive CH=O and CH(2)OH groups in the networks but also modifies the texture of the networks towards higher microporosity and higher specific surface area. The final networks with CH=O and CH(2)OH groups attached directly to the polyene main chains of the networks have a specific surface area from 400 to 800 m(2)/g and contain functional groups in a high amount, up to 9.6 mmol/g. The CH=O and CH(2)OH groups in the networks serve as active centres for the reversible capture of CO(2) and water vapour. The water vapour capture capacities of the networks (up to 445 mg/g at 297 K) are among the highest values reported for porous polymers, making these materials promising for cyclic water harvesting from the air. Covalent modification of the networks with (R)-(+)-3-aminopyrrolidine and (S)-(+)-2-methylbutyric acid enables the preparation of porous chiral networks and shows networks with CH=O and CH(2)OH groups as reactive supports suitable for the anchoring of various functional molecules. MDPI 2023-02-01 /pmc/articles/PMC9919244/ /pubmed/36772045 http://dx.doi.org/10.3390/polym15030743 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Havelková, Lucie
Bashta, Bogdana
Hašková, Alena
Vagenknechtová, Alice
Vyskočilová, Eliška
Brus, Jiří
Sedláček, Jan
Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks
title Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks
title_full Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks
title_fullStr Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks
title_full_unstemmed Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks
title_short Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H(2)O and CO(2) Capture and Construction of Porous Chiral Networks
title_sort combining polymerization and templating toward hyper-cross-linked poly(propargyl aldehyde)s and poly(propargyl alcohol)s for reversible h(2)o and co(2) capture and construction of porous chiral networks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919244/
https://www.ncbi.nlm.nih.gov/pubmed/36772045
http://dx.doi.org/10.3390/polym15030743
work_keys_str_mv AT havelkovalucie combiningpolymerizationandtemplatingtowardhypercrosslinkedpolypropargylaldehydesandpolypropargylalcoholsforreversibleh2oandco2captureandconstructionofporouschiralnetworks
AT bashtabogdana combiningpolymerizationandtemplatingtowardhypercrosslinkedpolypropargylaldehydesandpolypropargylalcoholsforreversibleh2oandco2captureandconstructionofporouschiralnetworks
AT haskovaalena combiningpolymerizationandtemplatingtowardhypercrosslinkedpolypropargylaldehydesandpolypropargylalcoholsforreversibleh2oandco2captureandconstructionofporouschiralnetworks
AT vagenknechtovaalice combiningpolymerizationandtemplatingtowardhypercrosslinkedpolypropargylaldehydesandpolypropargylalcoholsforreversibleh2oandco2captureandconstructionofporouschiralnetworks
AT vyskocilovaeliska combiningpolymerizationandtemplatingtowardhypercrosslinkedpolypropargylaldehydesandpolypropargylalcoholsforreversibleh2oandco2captureandconstructionofporouschiralnetworks
AT brusjiri combiningpolymerizationandtemplatingtowardhypercrosslinkedpolypropargylaldehydesandpolypropargylalcoholsforreversibleh2oandco2captureandconstructionofporouschiralnetworks
AT sedlacekjan combiningpolymerizationandtemplatingtowardhypercrosslinkedpolypropargylaldehydesandpolypropargylalcoholsforreversibleh2oandco2captureandconstructionofporouschiralnetworks