Cargando…
A Knowledge-Graph-Based Multimodal Deep Learning Framework for Identifying Drug–Drug Interactions
The identification of drug–drug interactions (DDIs) plays a crucial role in various areas of drug development. In this study, a deep learning framework (KGCN_NFM) is presented to recognize DDIs using coupling knowledge graph convolutional networks (KGCNs) with neural factorization machines (NFMs). A...
Autores principales: | Zhang, Jing, Chen, Meng, Liu, Jie, Peng, Dongdong, Dai, Zong, Zou, Xiaoyong, Li, Zhanchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919258/ https://www.ncbi.nlm.nih.gov/pubmed/36771157 http://dx.doi.org/10.3390/molecules28031490 |
Ejemplares similares
-
Identification of Potential Parkinson’s Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network
por: Liu, Jie, et al.
Publicado: (2022) -
Identification of Drug-Disease Associations Using Information of Molecular Structures and Clinical Symptoms via Deep Convolutional Neural Network
por: Li, Zhanchao, et al.
Publicado: (2020) -
DeepNC: a framework for drug-target interaction prediction with graph neural networks
por: Tran, Huu Ngoc Tran, et al.
Publicado: (2022) -
A unified drug–target interaction prediction framework based on knowledge graph and recommendation system
por: Ye, Qing, et al.
Publicado: (2021) -
Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
por: Hao, Xinkun, et al.
Publicado: (2022)