Cargando…

Acoustoelectric Effect for Rayleigh Wave in ZnO Produced by an Inhomogeneous In-Depth Electrical Conductivity Profile

The acousto-electric (AE) effect associated with the propagation of the Rayleigh wave in ZnO half-space was theoretically investigated by studying the changes in wave velocity and propagation loss induced by in-depth inhomogeneous changes in the ZnO electrical conductivity. An exponentially decaying...

Descripción completa

Detalles Bibliográficos
Autor principal: Caliendo, Cinzia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919299/
https://www.ncbi.nlm.nih.gov/pubmed/36772461
http://dx.doi.org/10.3390/s23031422
Descripción
Sumario:The acousto-electric (AE) effect associated with the propagation of the Rayleigh wave in ZnO half-space was theoretically investigated by studying the changes in wave velocity and propagation loss induced by in-depth inhomogeneous changes in the ZnO electrical conductivity. An exponentially decaying profile for the electrical conductivity was attributed to the ZnO half-space, for some values of the exponential decay constant (from 100 to 500 nm), in order to simulate the photoconductivity effect induced by ultra-violet illumination. The calculated Rayleigh wave velocity and attenuation vs. ZnO conductivity curves have the form of a double-relaxation response as opposed to the single-relaxation response which characterizes the well-known AE effect due to surface conductivity changes onto piezoelectric media. As to the author’s knowledge, this is the first time the double-relaxation AE effect has been theoretically predicted.