Cargando…

Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaci

The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance...

Descripción completa

Detalles Bibliográficos
Autores principales: Pascual, Susana, Rodríguez-Álvarez, Clara I., Kaloshian, Isgouhi, Nombela, Gloria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919380/
https://www.ncbi.nlm.nih.gov/pubmed/36771723
http://dx.doi.org/10.3390/plants12030641
Descripción
Sumario:The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci. Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant but not complete suppression of gene expression. Thus, our results demonstrate the requirement of Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model for this resistance to nematodes and insects.