Cargando…
Color Image Restoration Using Sub-Image Based Low-Rank Tensor Completion
Many restoration methods use the low-rank constraint of high-dimensional image signals to recover corrupted images. These signals are usually represented by tensors, which can maintain their inherent relevance. The image of this simple tensor presentation has a certain low-rank property, but does no...
Autores principales: | Liu, Xiaohua, Tang, Guijin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919421/ https://www.ncbi.nlm.nih.gov/pubmed/36772745 http://dx.doi.org/10.3390/s23031706 |
Ejemplares similares
-
Rank-Adaptive Tensor Completion Based on Tucker Decomposition
por: Liu, Siqi, et al.
Publicado: (2023) -
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
por: Gou, Shuiping, et al.
Publicado: (2013) -
A QoS Prediction Approach Based on Truncated Nuclear Norm Low-Rank Tensor Completion
por: Xia, Hong, et al.
Publicado: (2022) -
High-efficiency 3D black-blood thoracic aorta imaging with patch-based low-rank tensor reconstruction
por: Shi, Caiyun, et al.
Publicado: (2023) -
Color restoration based on digital pathology image
por: Sun, Guoxin, et al.
Publicado: (2023)