Cargando…
Adversarial dense graph convolutional networks for single-cell classification
MOTIVATION: In single-cell transcriptomics applications, effective identification of cell types in multicellular organisms and in-depth study of the relationships between genes has become one of the main goals of bioinformatics research. However, data heterogeneity and random noise pose significant...
Autores principales: | Wang, Kangwei, Li, Zhengwei, You, Zhu-Hong, Han, Pengyong, Nie, Ru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919433/ https://www.ncbi.nlm.nih.gov/pubmed/36661313 http://dx.doi.org/10.1093/bioinformatics/btad043 |
Ejemplares similares
-
Derivative-free optimization adversarial attacks for graph convolutional networks
por: Yang, Runze, et al.
Publicado: (2021) -
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021) -
Interpatient ECG Heartbeat Classification with an Adversarial Convolutional Neural Network
por: Zhang, Jing, et al.
Publicado: (2021) -
Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network
por: Lu, Zhonghao, et al.
Publicado: (2023) -
In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences
por: Li, Zhengwei, et al.
Publicado: (2017)