Cargando…
Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review
This review presents the research conducted to date in the field of cement-based composites reinforced with waste paper-based cellulose fibres, focusing on their composition, mechanical properties, and durability characteristics. The literature demonstrates that the properties of raw material (depen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919454/ https://www.ncbi.nlm.nih.gov/pubmed/36771821 http://dx.doi.org/10.3390/polym15030520 |
_version_ | 1784886829016678400 |
---|---|
author | Fernando, Sarah Gunasekara, Chamila Shahpasandi, Amin Nguyen, Kate Sofi, Massoud Setunge, Sujeeva Mendis, Priyan Rahman, Md. Tareq |
author_facet | Fernando, Sarah Gunasekara, Chamila Shahpasandi, Amin Nguyen, Kate Sofi, Massoud Setunge, Sujeeva Mendis, Priyan Rahman, Md. Tareq |
author_sort | Fernando, Sarah |
collection | PubMed |
description | This review presents the research conducted to date in the field of cement-based composites reinforced with waste paper-based cellulose fibres, focusing on their composition, mechanical properties, and durability characteristics. The literature demonstrates that the properties of raw material (depending on their own chemical composition) significantly influence the formation of the cement composite binders. When considering fresh properties, the presence of silica and magnesium compounds generally lead to favourable effects on the setting of the cement composite when combined with waste paper cellulose fibre. Reduction in density values, i.e., approximately 25%, was observed with the inclusion of waste paper fibres from 20 to 80% in cement composites. The homogeneous dispersion of fibres in the matrix is one of the crucial factors to achieve in order to develop composites with well-balanced mechanical properties incorporating waste paper cellulose fibres. Hence, dispersion of fibres can be improved by increasing water quantity corresponding to the optimal value, which was a water/cement ratio of 0.64 leading to optimum strength properties of the composite. Even though the effect of fibre dispersion in the matrix improves with the addition of water, higher porosity and voids govern the strength properties beyond an optimum water-to-cement ratio. Higher porosity leads to an increase in the water absorption and a lowering of the thermal conductivity properties with the addition of paper fibre in cement binders. Paper fibre absorbs a high amount of water leading to higher water absorption. This phenomenon is related to the hydrophilic nature of cellulosic fibres absorbing some volume of water due to their microporous structure. |
format | Online Article Text |
id | pubmed-9919454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99194542023-02-12 Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review Fernando, Sarah Gunasekara, Chamila Shahpasandi, Amin Nguyen, Kate Sofi, Massoud Setunge, Sujeeva Mendis, Priyan Rahman, Md. Tareq Polymers (Basel) Review This review presents the research conducted to date in the field of cement-based composites reinforced with waste paper-based cellulose fibres, focusing on their composition, mechanical properties, and durability characteristics. The literature demonstrates that the properties of raw material (depending on their own chemical composition) significantly influence the formation of the cement composite binders. When considering fresh properties, the presence of silica and magnesium compounds generally lead to favourable effects on the setting of the cement composite when combined with waste paper cellulose fibre. Reduction in density values, i.e., approximately 25%, was observed with the inclusion of waste paper fibres from 20 to 80% in cement composites. The homogeneous dispersion of fibres in the matrix is one of the crucial factors to achieve in order to develop composites with well-balanced mechanical properties incorporating waste paper cellulose fibres. Hence, dispersion of fibres can be improved by increasing water quantity corresponding to the optimal value, which was a water/cement ratio of 0.64 leading to optimum strength properties of the composite. Even though the effect of fibre dispersion in the matrix improves with the addition of water, higher porosity and voids govern the strength properties beyond an optimum water-to-cement ratio. Higher porosity leads to an increase in the water absorption and a lowering of the thermal conductivity properties with the addition of paper fibre in cement binders. Paper fibre absorbs a high amount of water leading to higher water absorption. This phenomenon is related to the hydrophilic nature of cellulosic fibres absorbing some volume of water due to their microporous structure. MDPI 2023-01-19 /pmc/articles/PMC9919454/ /pubmed/36771821 http://dx.doi.org/10.3390/polym15030520 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Fernando, Sarah Gunasekara, Chamila Shahpasandi, Amin Nguyen, Kate Sofi, Massoud Setunge, Sujeeva Mendis, Priyan Rahman, Md. Tareq Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review |
title | Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review |
title_full | Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review |
title_fullStr | Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review |
title_full_unstemmed | Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review |
title_short | Sustainable Cement Composite Integrating Waste Cellulose Fibre: A Comprehensive Review |
title_sort | sustainable cement composite integrating waste cellulose fibre: a comprehensive review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919454/ https://www.ncbi.nlm.nih.gov/pubmed/36771821 http://dx.doi.org/10.3390/polym15030520 |
work_keys_str_mv | AT fernandosarah sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview AT gunasekarachamila sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview AT shahpasandiamin sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview AT nguyenkate sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview AT sofimassoud sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview AT setungesujeeva sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview AT mendispriyan sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview AT rahmanmdtareq sustainablecementcompositeintegratingwastecellulosefibreacomprehensivereview |