Cargando…

Loss-Framed Adaptive Microcontingency Management for Preventing Prolonged Sedentariness: Development and Feasibility Study

BACKGROUND: A growing body of evidence shows that financial incentives can effectively reinforce individuals’ positive behavior change and improve compliance with health intervention programs. A critical factor in the design of incentive-based interventions is to set a proper incentive magnitude. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Woohyeok, Lee, Uichin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919499/
https://www.ncbi.nlm.nih.gov/pubmed/36705949
http://dx.doi.org/10.2196/41660
Descripción
Sumario:BACKGROUND: A growing body of evidence shows that financial incentives can effectively reinforce individuals’ positive behavior change and improve compliance with health intervention programs. A critical factor in the design of incentive-based interventions is to set a proper incentive magnitude. However, it is highly challenging to determine such magnitudes as the effects of incentive magnitude depend on personal attitudes and contexts. OBJECTIVE: This study aimed to illustrate loss-framed adaptive microcontingency management (L-AMCM) and the lessons learned from a feasibility study. L-AMCM discourages an individual’s adverse health behaviors by deducting particular expenses from a regularly assigned budget, where expenses are adaptively estimated based on the individual’s previous responses to varying expenses and contexts. METHODS: We developed a mobile health intervention app for preventing prolonged sedentary lifestyles. This app delivered a behavioral mission (ie, suggesting taking an active break for a while) with an incentive bid when 50 minutes of uninterrupted sedentary behavior happened. Participants were assigned to either the fixed (ie, deducting the monotonous expense for each mission failure) or adaptive (ie, deducting varying expenses estimated by the L-AMCM for each mission failure) incentive group. The intervention lasted 3 weeks. RESULTS: We recruited 41 participants (n=15, 37% women; fixed incentive group: n=20, 49% of participants; adaptive incentive group: n=21, 51% of participants) whose mean age was 24.0 (SD 3.8; range 19-34) years. Mission success rates did not show statistically significant differences by group (P=.54; fixed incentive group mean 0.66, SD 0.24; adaptive incentive group mean 0.61, SD 0.22). The follow-up analysis of the adaptive incentive group revealed that the influence of incentive magnitudes on mission success was not statistically significant (P=.18; odds ratio 0.98, 95% CI 0.95-1.01). On the basis of the qualitative interviews, such results were possibly because the participants had sufficient intrinsic motivation and less sensitivity to incentive magnitudes. CONCLUSIONS: Although our L-AMCM did not significantly affect users’ mission success rate, this study configures a pioneering work toward adaptively estimating incentives by considering user behaviors and contexts through leveraging mobile sensing and machine learning. We hope that this study inspires researchers to develop incentive-based interventions.