Cargando…
Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold
Aiming at the problem that a single neural network model has difficulty in accurately predicting trends of the remaining useful life of a rolling bearing, a method of predicting the remaining useful life of rolling bearings using a gated recurrent unit-deep autoregressive model (GRU-DeepAR) with an...
Autores principales: | Li, Jiahui, Wang, Zhihai, Liu, Xiaoqin, Feng, Zhengjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919518/ https://www.ncbi.nlm.nih.gov/pubmed/36772183 http://dx.doi.org/10.3390/s23031144 |
Ejemplares similares
-
Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD
por: Feng, Zhengjiang, et al.
Publicado: (2023) -
Deformation Prediction of Unstable Slopes Based on Real-Time Monitoring and DeepAR Model
por: Dong, Mei, et al.
Publicado: (2020) -
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2023) -
Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE–MACNN
por: Wang, Yaping, et al.
Publicado: (2022) -
Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin
por: Zhang, Rui, et al.
Publicado: (2022)