Cargando…

Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints

This paper reports the results of an investigation into the effectiveness of different lengths of Fiber-Reinforced Polymer (FRP) sheets in retrofitting the joints of Reinforced Concrete (RC) frames to improve the fragility function of ordinary RC frames. Several 8-storey RC buildings were investigat...

Descripción completa

Detalles Bibliográficos
Autores principales: Jafari, Saeed, Mahini, Seyed Saeed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919546/
https://www.ncbi.nlm.nih.gov/pubmed/36771919
http://dx.doi.org/10.3390/polym15030618
_version_ 1784886849486979072
author Jafari, Saeed
Mahini, Seyed Saeed
author_facet Jafari, Saeed
Mahini, Seyed Saeed
author_sort Jafari, Saeed
collection PubMed
description This paper reports the results of an investigation into the effectiveness of different lengths of Fiber-Reinforced Polymer (FRP) sheets in retrofitting the joints of Reinforced Concrete (RC) frames to improve the fragility function of ordinary RC frames. Several 8-storey RC buildings were investigated through FE modelling. The accuracy of the FE models was verified using peer research results. Fragility curves of FRP-retrofitting joints of two referenced RC frames were carried out by OpenSees, through Incremental Dynamic Analysis (IDA) analysis under 22 far-field earthquake records from 0.1 g to 4.0 g (with 0.1 g interments), based on FEMA P-695. Two types of retrofitting methods, web and flange bonding, were modeled and studied. The results showed that the fragility capacity of the retrofitted RC frames was significantly improved. Moreover, frames with longer sheets of FRP showed increased performance. In the complete state, the range of probability of exceedance grew from 2–2.5 g to 3–3.5 g (nearly 1 g), whereas, in the minor state, this growth was nearly 0.05 g. However, the fragility function of the flange-bonding was enhanced at a higher rate compared with that of the web-bonding RC frames. Carbon Fiber-Reinforced Polymer (CFRP) and Glass Fiber-Reinforced Polymer (GFRP) materials improved the probability of exceedance of the complete state from 3 g to 4.5 g and 4.8 g in flange bonding frames. This enhancement for both types of frames was more significant when joints were retrofitted with 400 and 500 mm compared with 600, 700, and 800 mm. The midpoint of the PGA at the complete damage state in the web-bonding frame increased from 1.076 g to 1.664 g and in the flange-bonding frame retrofitted with GFRP and CFRP raised from 1.551 g to 2.769 and 3.076, respectively. The collapse margin ratio (CMR) indicates an acceptable improvement in the retrofitted frames. Overall, the rate of enhancement in fragility function from the original frame to the frame with 500 mm FRP was significant; however, the slope of this rate declined for longer FRP sheets. The fragility performance improvement resulted in controlling plastic hinging by FRPs.
format Online
Article
Text
id pubmed-9919546
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99195462023-02-12 Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints Jafari, Saeed Mahini, Seyed Saeed Polymers (Basel) Article This paper reports the results of an investigation into the effectiveness of different lengths of Fiber-Reinforced Polymer (FRP) sheets in retrofitting the joints of Reinforced Concrete (RC) frames to improve the fragility function of ordinary RC frames. Several 8-storey RC buildings were investigated through FE modelling. The accuracy of the FE models was verified using peer research results. Fragility curves of FRP-retrofitting joints of two referenced RC frames were carried out by OpenSees, through Incremental Dynamic Analysis (IDA) analysis under 22 far-field earthquake records from 0.1 g to 4.0 g (with 0.1 g interments), based on FEMA P-695. Two types of retrofitting methods, web and flange bonding, were modeled and studied. The results showed that the fragility capacity of the retrofitted RC frames was significantly improved. Moreover, frames with longer sheets of FRP showed increased performance. In the complete state, the range of probability of exceedance grew from 2–2.5 g to 3–3.5 g (nearly 1 g), whereas, in the minor state, this growth was nearly 0.05 g. However, the fragility function of the flange-bonding was enhanced at a higher rate compared with that of the web-bonding RC frames. Carbon Fiber-Reinforced Polymer (CFRP) and Glass Fiber-Reinforced Polymer (GFRP) materials improved the probability of exceedance of the complete state from 3 g to 4.5 g and 4.8 g in flange bonding frames. This enhancement for both types of frames was more significant when joints were retrofitted with 400 and 500 mm compared with 600, 700, and 800 mm. The midpoint of the PGA at the complete damage state in the web-bonding frame increased from 1.076 g to 1.664 g and in the flange-bonding frame retrofitted with GFRP and CFRP raised from 1.551 g to 2.769 and 3.076, respectively. The collapse margin ratio (CMR) indicates an acceptable improvement in the retrofitted frames. Overall, the rate of enhancement in fragility function from the original frame to the frame with 500 mm FRP was significant; however, the slope of this rate declined for longer FRP sheets. The fragility performance improvement resulted in controlling plastic hinging by FRPs. MDPI 2023-01-25 /pmc/articles/PMC9919546/ /pubmed/36771919 http://dx.doi.org/10.3390/polym15030618 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jafari, Saeed
Mahini, Seyed Saeed
Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints
title Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints
title_full Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints
title_fullStr Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints
title_full_unstemmed Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints
title_short Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints
title_sort enhancement of the fragility capacity of rc frames using frps with different configurations at joints
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919546/
https://www.ncbi.nlm.nih.gov/pubmed/36771919
http://dx.doi.org/10.3390/polym15030618
work_keys_str_mv AT jafarisaeed enhancementofthefragilitycapacityofrcframesusingfrpswithdifferentconfigurationsatjoints
AT mahiniseyedsaeed enhancementofthefragilitycapacityofrcframesusingfrpswithdifferentconfigurationsatjoints