Cargando…
Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation
This paper investigated the micromechanical behavior of different 6H-SiC/Al systems during the uniaxial tensile loading by using molecular dynamics simulations. The results showed that the interface models responded diversely to the tensile stress when the four low-index surfaces of the Al were used...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919560/ https://www.ncbi.nlm.nih.gov/pubmed/36770365 http://dx.doi.org/10.3390/nano13030404 |
Sumario: | This paper investigated the micromechanical behavior of different 6H-SiC/Al systems during the uniaxial tensile loading by using molecular dynamics simulations. The results showed that the interface models responded diversely to the tensile stress when the four low-index surfaces of the Al were used as the variables of the joint surfaces. In terms of their stress–strain properties, the SiC(0001)/Al(001) models exhibited the highest tensile strength and the smallest elongation, while the other models produced certain deformations to relieve the excessive strain, thus increasing the elongation. The SiC(0001)/Al(110) models exhibited the largest elongations among all the models. From the aspect of their deformation characteristics, the SiC(0001)/Al(001) model performed almost no plastic deformation and dislocations during the tensile process. The deformation of the SiC(0001)/Al(110) model was dominated by the slip of the 1/6 <112> Shockley partial dislocations, which contributed to the intersecting stacking faults in the model. The SiC(0001)/Al(111) model produced a large number of dislocations under the tensile loading. Dislocation entanglement was also found in the model. Meanwhile, a unique defect structure consisting of three 1/6 <110> stair-rod dislocations and three stacking faults were found in the model. The plastic deformation in the SiC(0001)/Al(112) interface model was restricted by the L-C lock and was carried out along the 1/6 <110> stair-rod dislocations’ direction. These results reveal the interfacial micromechanical behaviors of the 6H-SiC/Al composites and demonstrate the complexity of the deformation systems of the interfaces under stress. |
---|