Cargando…
Development of a Machine-Learning Intrusion Detection System and Testing of Its Performance Using a Generative Adversarial Network
Intrusion detection and prevention are two of the most important issues to solve in network security infrastructure. Intrusion detection systems (IDSs) protect networks by using patterns to detect malicious traffic. As attackers have tried to dissimulate traffic in order to evade the rules applied,...
Autores principales: | Mari, Andrei-Grigore, Zinca, Daniel, Dobrota, Virgil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919617/ https://www.ncbi.nlm.nih.gov/pubmed/36772355 http://dx.doi.org/10.3390/s23031315 |
Ejemplares similares
-
Adversarial attacks against supervised machine learning based network intrusion detection systems
por: Alshahrani, Ebtihaj, et al.
Publicado: (2022) -
A Real-Time Streaming System for Customized Network Traffic Capture †
por: Costin, Adrian-Tiberiu, et al.
Publicado: (2023) -
An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset
por: Rao, Yamarthi Narasimha, et al.
Publicado: (2023) -
SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems
por: Aldhaheri, Sahar, et al.
Publicado: (2023) -
A generative adversarial model of intrusive imagery in the human brain
por: Cushing, Cody A, et al.
Publicado: (2023)