Cargando…
EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends
Game playing is an accessible leisure activity. Recently, the World Health Organization officially included gaming disorder in the ICD-11, and studies using several bio-signals were conducted to quantitatively determine this. However, most EEG studies regarding internet gaming disorder (IGD) were co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919677/ https://www.ncbi.nlm.nih.gov/pubmed/36772696 http://dx.doi.org/10.3390/s23031659 |
_version_ | 1784886882329427968 |
---|---|
author | Kim, Jung-Yong Kim, Dong-Joon Im, Sung-Kyun Kim, Hea-Sol Park, Ji-Soo |
author_facet | Kim, Jung-Yong Kim, Dong-Joon Im, Sung-Kyun Kim, Hea-Sol Park, Ji-Soo |
author_sort | Kim, Jung-Yong |
collection | PubMed |
description | Game playing is an accessible leisure activity. Recently, the World Health Organization officially included gaming disorder in the ICD-11, and studies using several bio-signals were conducted to quantitatively determine this. However, most EEG studies regarding internet gaming disorder (IGD) were conducted in the resting state, and the outcomes appeared to be too inconsistent to identify a general trend. Therefore, this study aimed to use a series of statistical processes with all the existing EEG parameters until the most effective ones to identify the difference between IGD subjects IGD and healthy subjects was determined. Thirty subjects were grouped into IGD (n = 15) and healthy (n = 15) subjects by using the Young’s internet addition test (IAT) and the compulsive internet use scale (CIUS). EEG data for 16 channels were collected while the subjects played League of Legends. For the exhaustive search of parameters, 240 parameters were tested in terms of t-test, factor analysis, Pearson correlation, and finally logistic regression analysis. After a series of statistical processes, the parameters from Alpha, sensory motor rhythm (SMR), and MidBeta ranging from the Fp1, C3, C4, and O1 channels were found to be best indicators of IGD symptoms. The accuracy of diagnosis was computed as 63.5–73.1% before cross-validation. The most interesting finding of the study was the dynamics of EEG relative power in the 10–20 Hz band. This EEG crossing phenomenon between IGD and healthy subjects may explain why previous research showed inconsistent outcomes. The outcome of this study could be the referential guide for further investigation to quantitatively assess IGD symptoms. |
format | Online Article Text |
id | pubmed-9919677 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99196772023-02-12 EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends Kim, Jung-Yong Kim, Dong-Joon Im, Sung-Kyun Kim, Hea-Sol Park, Ji-Soo Sensors (Basel) Article Game playing is an accessible leisure activity. Recently, the World Health Organization officially included gaming disorder in the ICD-11, and studies using several bio-signals were conducted to quantitatively determine this. However, most EEG studies regarding internet gaming disorder (IGD) were conducted in the resting state, and the outcomes appeared to be too inconsistent to identify a general trend. Therefore, this study aimed to use a series of statistical processes with all the existing EEG parameters until the most effective ones to identify the difference between IGD subjects IGD and healthy subjects was determined. Thirty subjects were grouped into IGD (n = 15) and healthy (n = 15) subjects by using the Young’s internet addition test (IAT) and the compulsive internet use scale (CIUS). EEG data for 16 channels were collected while the subjects played League of Legends. For the exhaustive search of parameters, 240 parameters were tested in terms of t-test, factor analysis, Pearson correlation, and finally logistic regression analysis. After a series of statistical processes, the parameters from Alpha, sensory motor rhythm (SMR), and MidBeta ranging from the Fp1, C3, C4, and O1 channels were found to be best indicators of IGD symptoms. The accuracy of diagnosis was computed as 63.5–73.1% before cross-validation. The most interesting finding of the study was the dynamics of EEG relative power in the 10–20 Hz band. This EEG crossing phenomenon between IGD and healthy subjects may explain why previous research showed inconsistent outcomes. The outcome of this study could be the referential guide for further investigation to quantitatively assess IGD symptoms. MDPI 2023-02-02 /pmc/articles/PMC9919677/ /pubmed/36772696 http://dx.doi.org/10.3390/s23031659 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Jung-Yong Kim, Dong-Joon Im, Sung-Kyun Kim, Hea-Sol Park, Ji-Soo EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends |
title | EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends |
title_full | EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends |
title_fullStr | EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends |
title_full_unstemmed | EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends |
title_short | EEG Parameter Selection Reflecting the Characteristics of Internet Gaming Disorder While Playing League of Legends |
title_sort | eeg parameter selection reflecting the characteristics of internet gaming disorder while playing league of legends |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919677/ https://www.ncbi.nlm.nih.gov/pubmed/36772696 http://dx.doi.org/10.3390/s23031659 |
work_keys_str_mv | AT kimjungyong eegparameterselectionreflectingthecharacteristicsofinternetgamingdisorderwhileplayingleagueoflegends AT kimdongjoon eegparameterselectionreflectingthecharacteristicsofinternetgamingdisorderwhileplayingleagueoflegends AT imsungkyun eegparameterselectionreflectingthecharacteristicsofinternetgamingdisorderwhileplayingleagueoflegends AT kimheasol eegparameterselectionreflectingthecharacteristicsofinternetgamingdisorderwhileplayingleagueoflegends AT parkjisoo eegparameterselectionreflectingthecharacteristicsofinternetgamingdisorderwhileplayingleagueoflegends |