Cargando…
Power Efficient Machine Learning Models Deployment on Edge IoT Devices
Computing has undergone a significant transformation over the past two decades, shifting from a machine-based approach to a human-centric, virtually invisible service known as ubiquitous or pervasive computing. This change has been achieved by incorporating small embedded devices into a larger compu...
Autores principales: | Fanariotis, Anastasios, Orphanoudakis, Theofanis, Kotrotsios, Konstantinos, Fotopoulos, Vassilis, Keramidas, George, Karkazis, Panagiotis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919686/ https://www.ncbi.nlm.nih.gov/pubmed/36772635 http://dx.doi.org/10.3390/s23031595 |
Ejemplares similares
-
Design Space Exploration of a Multi-Model AI-Based Indoor Localization System
por: Kotrotsios, Konstantinos, et al.
Publicado: (2022) -
Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment
por: Cheruvu, Sunil, et al.
Publicado: (2019) -
LDAKM-EIoT: Lightweight Device Authentication and Key Management Mechanism for Edge-Based IoT Deployment
por: Wazid, Mohammad, et al.
Publicado: (2019) -
Edge Machine Learning for AI-Enabled IoT Devices: A Review
por: Merenda, Massimo, et al.
Publicado: (2020) -
Components and services for IoT platforms: paving the way for IoT standards
por: Keramidas, Georgios, et al.
Publicado: (2016)