Cargando…
Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement
Fiber-reinforced polymer (FRP) composites have become attractive for strengthening and repairing deteriorated concrete structures. However, their poor high-temperature resistance and durability in some extreme environments, such as frequent water-vapor erosion and temperature changes, limit their ap...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919692/ https://www.ncbi.nlm.nih.gov/pubmed/36770264 http://dx.doi.org/10.3390/ma16031258 |
_version_ | 1784886886220693504 |
---|---|
author | Zhang, Qihang Zhang, Xin Liu, Qiaoling |
author_facet | Zhang, Qihang Zhang, Xin Liu, Qiaoling |
author_sort | Zhang, Qihang |
collection | PubMed |
description | Fiber-reinforced polymer (FRP) composites have become attractive for strengthening and repairing deteriorated concrete structures. However, their poor high-temperature resistance and durability in some extreme environments, such as frequent water-vapor erosion and temperature changes, limit their application. Magnesium phosphate cement (MPC) has been used to repair damaged concrete due to its excellent high-temperature resistance and durability. Therefore, this paper aims to study the compressive behavior of concrete columns strengthened with fiber-reinforced inorganic polymer (FRiP) composites based on magnesium phosphate cement so as to evaluate the confinement effect. Twenty-one cylindrical specimens were prepared to examine the axial compressive behavior of carbon-fiber-reinforced inorganic polymer (CFRiP) specimens based on magnesium phosphate cement confined by one to three layers of carbon-fiber fabrics. They are compared with concrete specimens strengthened with epoxy-based FRP and unconfined concrete specimens. The test results show that compared with the unconfined concrete specimen, the strength of the CFRiP-strengthened specimens based on magnesium phosphate increases by 1.69–2.50 times, and their ultimate strain is enlarged by 1.83–3.50 times. The strength and ultimate strain of the CFRiP-strengthened specimens based on magnesium phosphate are approximately 95% and 60% of those of the specimens strengthened with epoxy-based FRP, respectively. A semiempirical model of concrete confined by the CFRiP system based on magnesium phosphate cement is also proposed. The theoretical prediction is finally compared with the experimental results, indicating that the developed model provides a prediction close to the test results. |
format | Online Article Text |
id | pubmed-9919692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99196922023-02-12 Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement Zhang, Qihang Zhang, Xin Liu, Qiaoling Materials (Basel) Article Fiber-reinforced polymer (FRP) composites have become attractive for strengthening and repairing deteriorated concrete structures. However, their poor high-temperature resistance and durability in some extreme environments, such as frequent water-vapor erosion and temperature changes, limit their application. Magnesium phosphate cement (MPC) has been used to repair damaged concrete due to its excellent high-temperature resistance and durability. Therefore, this paper aims to study the compressive behavior of concrete columns strengthened with fiber-reinforced inorganic polymer (FRiP) composites based on magnesium phosphate cement so as to evaluate the confinement effect. Twenty-one cylindrical specimens were prepared to examine the axial compressive behavior of carbon-fiber-reinforced inorganic polymer (CFRiP) specimens based on magnesium phosphate cement confined by one to three layers of carbon-fiber fabrics. They are compared with concrete specimens strengthened with epoxy-based FRP and unconfined concrete specimens. The test results show that compared with the unconfined concrete specimen, the strength of the CFRiP-strengthened specimens based on magnesium phosphate increases by 1.69–2.50 times, and their ultimate strain is enlarged by 1.83–3.50 times. The strength and ultimate strain of the CFRiP-strengthened specimens based on magnesium phosphate are approximately 95% and 60% of those of the specimens strengthened with epoxy-based FRP, respectively. A semiempirical model of concrete confined by the CFRiP system based on magnesium phosphate cement is also proposed. The theoretical prediction is finally compared with the experimental results, indicating that the developed model provides a prediction close to the test results. MDPI 2023-02-01 /pmc/articles/PMC9919692/ /pubmed/36770264 http://dx.doi.org/10.3390/ma16031258 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Qihang Zhang, Xin Liu, Qiaoling Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement |
title | Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement |
title_full | Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement |
title_fullStr | Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement |
title_full_unstemmed | Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement |
title_short | Compression Behavior of Concrete Columns Strengthened with Fiber-Reinforced Inorganic Composites Based on Magnesium Phosphate Cement |
title_sort | compression behavior of concrete columns strengthened with fiber-reinforced inorganic composites based on magnesium phosphate cement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919692/ https://www.ncbi.nlm.nih.gov/pubmed/36770264 http://dx.doi.org/10.3390/ma16031258 |
work_keys_str_mv | AT zhangqihang compressionbehaviorofconcretecolumnsstrengthenedwithfiberreinforcedinorganiccompositesbasedonmagnesiumphosphatecement AT zhangxin compressionbehaviorofconcretecolumnsstrengthenedwithfiberreinforcedinorganiccompositesbasedonmagnesiumphosphatecement AT liuqiaoling compressionbehaviorofconcretecolumnsstrengthenedwithfiberreinforcedinorganiccompositesbasedonmagnesiumphosphatecement |