Cargando…
Fatigue of an Aluminum Foam Sandwich Formed by Powder Metallurgy
In this paper, an aluminum foam sandwich (AFS) was prepared by the rolling composite-powder metallurgy method, and its fatigue properties were studied. It was compared with an AFS made by the adhesive method to study its fatigue properties more directly. In this experiment, the fatigue performance w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919704/ https://www.ncbi.nlm.nih.gov/pubmed/36770231 http://dx.doi.org/10.3390/ma16031226 |
Sumario: | In this paper, an aluminum foam sandwich (AFS) was prepared by the rolling composite-powder metallurgy method, and its fatigue properties were studied. It was compared with an AFS made by the adhesive method to study its fatigue properties more directly. In this experiment, the fatigue performance was investigated by studying the microscopic interface, fatigue life, deflection curve, and failure mode. The results show that the fatigue life of an AFS with the rolling composite-powder metallurgy method is much longer than that with the adhesive method. The failure mode of an AFS made by the rolling composite-powder metallurgy method is shear failure, and that of an AFS made by the adhesive method is shear failure and interface debonding. An AFS with the rolling composite-powder metallurgy method has better fatigue properties. This paper also explored the fatigue damage model using the fatigue modulus method, and the polynomial fitting method has a higher fitting degree. |
---|