Cargando…
Small Structural Differences Govern the Carbonic Anhydrase II Inhibition Activity of Cytotoxic Triterpene Acetazolamide Conjugates
Acetylated triterpenoids betulin, oleanolic acid, ursolic acid, and glycyrrhetinic acid were converted into their succinyl-spacered acetazolamide conjugates. These conjugates were screened for their inhibitory activity onto carbonic anhydrase II and their cytotoxicity employing several human tumor c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919727/ https://www.ncbi.nlm.nih.gov/pubmed/36770674 http://dx.doi.org/10.3390/molecules28031009 |
Sumario: | Acetylated triterpenoids betulin, oleanolic acid, ursolic acid, and glycyrrhetinic acid were converted into their succinyl-spacered acetazolamide conjugates. These conjugates were screened for their inhibitory activity onto carbonic anhydrase II and their cytotoxicity employing several human tumor cell lines and non-malignant fibroblasts. As a result, the best inhibitors were derived from betulin and glycyrrhetinic acid while those derived from ursolic or oleanolic acid were significantly weaker inhibitors but also of diminished cytotoxicity. A betulin-derived conjugate held a K(i) = 0.129 μM and an EC(50) = 8.5 μM for human A375 melanoma cells. |
---|