Cargando…
Interpretable Machine Learning for Prediction of Post-Fire Self-Healing of Concrete
Developing accurate and interpretable models to forecast concrete’s self-healing behavior is of interest to material engineers, scientists, and civil engineering contractors. Machine learning (ML) and artificial intelligence are powerful tools that allow constructing high-precision predictions, yet...
Autores principales: | Rajczakowska, Magdalena, Szeląg, Maciej, Habermehl-Cwirzen, Karin, Hedlund, Hans, Cwirzen, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919821/ https://www.ncbi.nlm.nih.gov/pubmed/36770279 http://dx.doi.org/10.3390/ma16031273 |
Ejemplares similares
-
The Effect of Exposure on the Autogenous Self-Healing of Ordinary Portland Cement Mortars
por: Rajczakowska, Magdalena, et al.
Publicado: (2019) -
Does a High Amount of Unhydrated Portland Cement Ensure an Effective Autogenous Self-Healing of Mortar?
por: Rajczakowska, Magdalena, et al.
Publicado: (2019) -
A Review of the Mechanical Properties and Durability of Ecological Concretes in a Cold Climate in Comparison to Standard Ordinary Portland Cement-Based Concrete
por: Kothari, Ankit, et al.
Publicado: (2020) -
Activation of a Raw Clay by Mechanochemical Process—Effects of Various Parameters on the Process Efficiency and Cementitious Properties
por: Tole, Ilda, et al.
Publicado: (2018) -
Eco-UHPC as Repair Material—Bond Strength, Interfacial Transition Zone and Effects of Formwork Type
por: Kothari, Ankit, et al.
Publicado: (2020)