Cargando…
Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations
A systemic study on improving particulate pollutant filtration efficiency through the combination of conventional fabrics is presented with the objective of finding comfortable, yet effective airway mask materials and products. Fabrics, nonwovens, and their combinations made of cotton, silk, wool, a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919832/ https://www.ncbi.nlm.nih.gov/pubmed/36770339 http://dx.doi.org/10.3390/nano13030378 |
_version_ | 1784886921544073216 |
---|---|
author | Wang, Ji Zhao, Renhai Zhao, Yintao Ning, Xin |
author_facet | Wang, Ji Zhao, Renhai Zhao, Yintao Ning, Xin |
author_sort | Wang, Ji |
collection | PubMed |
description | A systemic study on improving particulate pollutant filtration efficiency through the combination of conventional fabrics is presented with the objective of finding comfortable, yet effective airway mask materials and products. Fabrics, nonwovens, and their combinations made of cotton, silk, wool, and synthetic fibers are examined on their filtration efficiency for aerosol particles with diameters ranging from 0.225 μm to 3.750 μm under industry-standard testing conditions. It is found that composite fabrics can improve filtration efficiency more than just layers of the same fabric, and the filtration quality factor of some of the fabric combinations can exceed that of the standard melt-blown materials. In addition, fabric friction and charging between the combined layers also improve filtration efficiency substantially. With a broader understanding of the fabric characteristics, we may design mask products with reduced facial skin discomfort, better aesthetics, as well as the ability to alleviate the environmental impact of discarded protective masks in the extended period of controlling the transmission of pollutants and viruses, such as during the COVID-19 pandemic. |
format | Online Article Text |
id | pubmed-9919832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99198322023-02-12 Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations Wang, Ji Zhao, Renhai Zhao, Yintao Ning, Xin Nanomaterials (Basel) Article A systemic study on improving particulate pollutant filtration efficiency through the combination of conventional fabrics is presented with the objective of finding comfortable, yet effective airway mask materials and products. Fabrics, nonwovens, and their combinations made of cotton, silk, wool, and synthetic fibers are examined on their filtration efficiency for aerosol particles with diameters ranging from 0.225 μm to 3.750 μm under industry-standard testing conditions. It is found that composite fabrics can improve filtration efficiency more than just layers of the same fabric, and the filtration quality factor of some of the fabric combinations can exceed that of the standard melt-blown materials. In addition, fabric friction and charging between the combined layers also improve filtration efficiency substantially. With a broader understanding of the fabric characteristics, we may design mask products with reduced facial skin discomfort, better aesthetics, as well as the ability to alleviate the environmental impact of discarded protective masks in the extended period of controlling the transmission of pollutants and viruses, such as during the COVID-19 pandemic. MDPI 2023-01-17 /pmc/articles/PMC9919832/ /pubmed/36770339 http://dx.doi.org/10.3390/nano13030378 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Ji Zhao, Renhai Zhao, Yintao Ning, Xin Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations |
title | Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations |
title_full | Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations |
title_fullStr | Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations |
title_full_unstemmed | Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations |
title_short | Evaluation of Mask Performances in Filtration and Comfort in Fabric Combinations |
title_sort | evaluation of mask performances in filtration and comfort in fabric combinations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919832/ https://www.ncbi.nlm.nih.gov/pubmed/36770339 http://dx.doi.org/10.3390/nano13030378 |
work_keys_str_mv | AT wangji evaluationofmaskperformancesinfiltrationandcomfortinfabriccombinations AT zhaorenhai evaluationofmaskperformancesinfiltrationandcomfortinfabriccombinations AT zhaoyintao evaluationofmaskperformancesinfiltrationandcomfortinfabriccombinations AT ningxin evaluationofmaskperformancesinfiltrationandcomfortinfabriccombinations |