Cargando…
Sensor-Based Activity Recognition Using Frequency Band Enhancement Filters and Model Ensembles
Deep learning methods are widely used in sensor-based activity recognition, contributing to improved recognition accuracy. Accelerometer and gyroscope data are mainly used as input to the models. Accelerometer data are sometimes converted to a frequency spectrum. However, data augmentation based on...
Autores principales: | Tsutsumi, Hyuga, Kondo, Kei, Takenaka, Koki, Hasegawa, Tatsuhito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919843/ https://www.ncbi.nlm.nih.gov/pubmed/36772504 http://dx.doi.org/10.3390/s23031465 |
Ejemplares similares
-
Segment-Based Unsupervised Learning Method in Sensor-Based Human Activity Recognition
por: Takenaka, Koki, et al.
Publicado: (2023) -
Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy
por: Kondo, Kazuma, et al.
Publicado: (2021) -
Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition
por: Shen, Fangyao, et al.
Publicado: (2021) -
Multi-Frequency Band Pyroelectric Sensors
por: Hsiao, Chun-Ching, et al.
Publicado: (2014) -
Frequency Selective Surface for Ultra-Wide Band Filtering and Shielding
por: De Sabata, Aldo, et al.
Publicado: (2022)