Cargando…
Eye-in-Hand Robotic Arm Gripping System Based on Machine Learning and State Delay Optimization †
This research focused on using RGB-D images and modifying an existing machine learning network architecture to generate predictions of the location of successfully grasped objects and to optimize the control system for state delays. A five-finger gripper designed to mimic the human palm was tested t...
Autores principales: | Chen, Chin-Sheng, Hu, Nien-Tsu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919884/ https://www.ncbi.nlm.nih.gov/pubmed/36772116 http://dx.doi.org/10.3390/s23031076 |
Ejemplares similares
-
Machine-learning prediction of self-care activity by grip strengths of both hands in poststroke hemiplegia
por: Suzuki, Makoto, et al.
Publicado: (2020) -
Measurement of Hand/Handrim Grip Forces in Two Different One Arm Drive Wheelchairs
por: Mandy, Anne, et al.
Publicado: (2014) -
Simultaneous Hand–Eye and Intrinsic Calibration of a Laser Profilometer Mounted on a Robot Arm
por: Pavlovčič, Urban, et al.
Publicado: (2021) -
A low-dimensional representation of arm movements and hand grip forces in post-stroke individuals
por: Kanzler, Christoph M., et al.
Publicado: (2022) -
Depression and Hand-Grip: Unraveling the Association
por: Ganipineni, Vijay Durga Pradeep, et al.
Publicado: (2023)