Cargando…
Unsupervised Drones Swarm Characterization Using RF Signals Analysis and Machine Learning Methods
Autonomous unmanned aerial vehicles (UAVs) have attracted increasing academic and industrial attention during the last decade. Using drones have broad benefits in diverse areas, such as civil and military applications, aerial photography and videography, mapping and surveying, agriculture, and disas...
Autores principales: | Ashush, Nerya, Greenberg, Shlomo, Manor, Erez, Ben-Shimol, Yehuda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919887/ https://www.ncbi.nlm.nih.gov/pubmed/36772629 http://dx.doi.org/10.3390/s23031589 |
Ejemplares similares
-
An Application of Inverse Reinforcement Learning to Estimate Interference in Drone Swarms
por: Kim, Keum Joo, et al.
Publicado: (2022) -
SignalFormer: Hybrid Transformer for Automatic Drone Identification Based on Drone RF Signals
por: Yan, Xiang, et al.
Publicado: (2023) -
DroneRF dataset: A dataset of drones for RF-based detection, classification and identification
por: Allahham, MHD Saria, et al.
Publicado: (2019) -
Drone Detection and Tracking Using RF Identification Signals
por: Aouladhadj, Driss, et al.
Publicado: (2023) -
Autonomous Navigation for Drone Swarms in GPS-Denied Environments Using Structured Learning
por: Power, William, et al.
Publicado: (2020)