Cargando…
Performance Enhancement in Federated Learning by Reducing Class Imbalance of Non-IID Data
Due to the distributed data collection and learning in federated learnings, many clients conduct local training with non-independent and identically distributed (non-IID) datasets. Accordingly, the training from these datasets results in severe performance degradation. We propose an efficient algori...
Autores principales: | Seol, Mihye, Kim, Taejoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919903/ https://www.ncbi.nlm.nih.gov/pubmed/36772192 http://dx.doi.org/10.3390/s23031152 |
Ejemplares similares
-
DAG-Based Blockchain Sharding for Secure Federated Learning with Non-IID Data
por: Lee, Jungjae, et al.
Publicado: (2022) -
Cross-Domain Federated Data Modeling on Non-IID Data
por: Chai, Baobao, et al.
Publicado: (2022) -
LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data
por: Huang, Li, et al.
Publicado: (2020) -
Fair detection of poisoning attacks in federated learning on non-i.i.d. data
por: Singh, Ashneet Khandpur, et al.
Publicado: (2023) -
An Optimization Method for Non-IID Federated Learning Based on Deep Reinforcement Learning
por: Meng, Xutao, et al.
Publicado: (2023)