Cargando…

Optimal Channel Training Design for Secure Short-Packet Communications

Physical layer security is a promising technique to ensure the confidentiality of short-packet communications, since no additional channel uses are needed. Motivated by the fact of finite coding blocklength in short-packet communications, we attempt to investigate the problem of how many the channel...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Dechuan, Li, Jin, Hu, Jianwei, Zhang, Xingang, Zhang, Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919970/
https://www.ncbi.nlm.nih.gov/pubmed/36772106
http://dx.doi.org/10.3390/s23031068
Descripción
Sumario:Physical layer security is a promising technique to ensure the confidentiality of short-packet communications, since no additional channel uses are needed. Motivated by the fact of finite coding blocklength in short-packet communications, we attempt to investigate the problem of how many the channel uses utilized for channel training should be allocated to perform secure communications. Based on the finite blocklength information theory, we derive a closed-form expression to approximate the average achievable secrecy throughput. To gain more insights, we also present the asymptotic average secrecy throughput under two special cases, i.e., high signal-to-noise ratio (SNR) and infinite blocklength. Moreover, we determine the optimal channel training length to maximize the average secrecy throughput under the reliability constraint and given blocklength. Numerical results are provided to validate the analysis and demonstrate that the performance gain achieved by the optimal channel training length is remarkable, relative to other benchmark schemes.