Cargando…
Deep-Q-Network-Based Packet Scheduling in an IoT Environment
With the advent of the Internet of Things (IoT) era, a wide array of wireless sensors supporting the IoT have proliferated. As key elements for enabling the IoT, wireless sensor nodes require minimal energy consumption and low device complexity. In particular, energy-efficient resource scheduling is...
Autores principales: | Fu, Xing, Kim, Jeong Geun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919974/ https://www.ncbi.nlm.nih.gov/pubmed/36772379 http://dx.doi.org/10.3390/s23031339 |
Ejemplares similares
-
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
por: Sheng, Shuran, et al.
Publicado: (2021) -
Automated IoT Device Identification Based on Full Packet Information Using Real-Time Network Traffic
por: Yousefnezhad, Narges, et al.
Publicado: (2021) -
QoS-Based Service-Time Scheduling in the IoT-Edge Cloud
por: Mutichiro, Briytone, et al.
Publicado: (2021) -
Energy-Efficient Uplink Scheduling in Narrowband IoT
por: Yassine, Farah, et al.
Publicado: (2022) -
Accurate Crack Detection Based on Distributed Deep Learning for IoT Environment
por: Kim, Youngpil, et al.
Publicado: (2023)