Cargando…
Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles
ZnO nanoparticles (NPs) show remarkable efficiency in removing various contaminants from aqueous systems. Doping ZnO NPs with a second metal element can dramatically change the physicochemical properties of the pristine nanoparticles. However, there have been limited reports on the absorption of dop...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919997/ https://www.ncbi.nlm.nih.gov/pubmed/36770527 http://dx.doi.org/10.3390/nano13030566 |
_version_ | 1784886961731796992 |
---|---|
author | , Sachin Pramanik, Biplob Kumar Singh, Nahar Zizhou, Rumbidzai Houshyar, Shadi Cole, Ivan Yin, Hong |
author_facet | , Sachin Pramanik, Biplob Kumar Singh, Nahar Zizhou, Rumbidzai Houshyar, Shadi Cole, Ivan Yin, Hong |
author_sort | , Sachin |
collection | PubMed |
description | ZnO nanoparticles (NPs) show remarkable efficiency in removing various contaminants from aqueous systems. Doping ZnO NPs with a second metal element can dramatically change the physicochemical properties of the pristine nanoparticles. However, there have been limited reports on the absorption of doped ZnO NPs, especially comparing the performance of ZnO NPs with different doping elements. Herein, ZnO NPs were doped with three transitional metals (Co, Fe, and Mn) at a nominal 2 wt.%. The particle surface had a higher dopant concentration than the interior for all NPs, implying the migration of the dopants to the surface. Because doping atoms inhibited grain growth, the doped ZnO NPs had a small particle size and a large surface area. The adsorption performance followed the order of Fe-doped < undoped < Mn-doped < Co-doped ZnO. Co-doped ZnO had an increased surface area and less tendency to agglomerate in an aqueous solution, showing the best adsorption performance. The adsorption of Congo red (CR) on Co-doped ZnO followed the pseudo-second-order model and the Langmuir isotherm. The adsorption process was spontaneous through monolayer chemisorption, and the maximum adsorption capacity was 230 mg/g. Finally, the Co-doped ZnO was successfully incorporated into an alginate membrane by electrospinning. The membrane demonstrated excellent adsorption performance and had great potential as an innovative and low-cost adsorbent (inexpensive raw materials and simple processing) for wastewater purification. |
format | Online Article Text |
id | pubmed-9919997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99199972023-02-12 Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles , Sachin Pramanik, Biplob Kumar Singh, Nahar Zizhou, Rumbidzai Houshyar, Shadi Cole, Ivan Yin, Hong Nanomaterials (Basel) Article ZnO nanoparticles (NPs) show remarkable efficiency in removing various contaminants from aqueous systems. Doping ZnO NPs with a second metal element can dramatically change the physicochemical properties of the pristine nanoparticles. However, there have been limited reports on the absorption of doped ZnO NPs, especially comparing the performance of ZnO NPs with different doping elements. Herein, ZnO NPs were doped with three transitional metals (Co, Fe, and Mn) at a nominal 2 wt.%. The particle surface had a higher dopant concentration than the interior for all NPs, implying the migration of the dopants to the surface. Because doping atoms inhibited grain growth, the doped ZnO NPs had a small particle size and a large surface area. The adsorption performance followed the order of Fe-doped < undoped < Mn-doped < Co-doped ZnO. Co-doped ZnO had an increased surface area and less tendency to agglomerate in an aqueous solution, showing the best adsorption performance. The adsorption of Congo red (CR) on Co-doped ZnO followed the pseudo-second-order model and the Langmuir isotherm. The adsorption process was spontaneous through monolayer chemisorption, and the maximum adsorption capacity was 230 mg/g. Finally, the Co-doped ZnO was successfully incorporated into an alginate membrane by electrospinning. The membrane demonstrated excellent adsorption performance and had great potential as an innovative and low-cost adsorbent (inexpensive raw materials and simple processing) for wastewater purification. MDPI 2023-01-30 /pmc/articles/PMC9919997/ /pubmed/36770527 http://dx.doi.org/10.3390/nano13030566 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article , Sachin Pramanik, Biplob Kumar Singh, Nahar Zizhou, Rumbidzai Houshyar, Shadi Cole, Ivan Yin, Hong Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles |
title | Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles |
title_full | Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles |
title_fullStr | Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles |
title_full_unstemmed | Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles |
title_short | Fast and Effective Removal of Congo Red by Doped ZnO Nanoparticles |
title_sort | fast and effective removal of congo red by doped zno nanoparticles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919997/ https://www.ncbi.nlm.nih.gov/pubmed/36770527 http://dx.doi.org/10.3390/nano13030566 |
work_keys_str_mv | AT sachin fastandeffectiveremovalofcongoredbydopedznonanoparticles AT pramanikbiplobkumar fastandeffectiveremovalofcongoredbydopedznonanoparticles AT singhnahar fastandeffectiveremovalofcongoredbydopedznonanoparticles AT zizhourumbidzai fastandeffectiveremovalofcongoredbydopedznonanoparticles AT houshyarshadi fastandeffectiveremovalofcongoredbydopedznonanoparticles AT coleivan fastandeffectiveremovalofcongoredbydopedznonanoparticles AT yinhong fastandeffectiveremovalofcongoredbydopedznonanoparticles |