Cargando…
Deep Learning of GNSS Acquisition
Signal acquisition is a crucial step in Global Navigation Satellite System (GNSS) receivers, which is typically solved by maximizing the so-called Cross-Ambiguity Function (CAF) as a hypothesis testing problem. This article proposes to use deep learning models to perform such acquisition, whereby th...
Autores principales: | Borhani-Darian, Parisa, Li, Haoqing, Wu, Peng, Closas, Pau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920026/ https://www.ncbi.nlm.nih.gov/pubmed/36772605 http://dx.doi.org/10.3390/s23031566 |
Ejemplares similares
-
Huber’s Non-Linearity for GNSS Interference Mitigation †
por: Borio, Daniele, et al.
Publicado: (2018) -
Robust Statistics for GNSS Positioning under Harsh Conditions: A Useful Tool?
por: Medina, Daniel, et al.
Publicado: (2019) -
Detection of Induced GNSS Spoofing Using S-Curve-Bias
por: Wang, Wenyi, et al.
Publicado: (2019) -
Low Complexity Robust Data Demodulation for GNSS
por: Ortega, Lorenzo, et al.
Publicado: (2021) -
Robust Filtering Techniques for RTK Positioning in Harsh Propagation Environments
por: Medina, Daniel, et al.
Publicado: (2021)