Cargando…
Multi-Class Classification and Multi-Output Regression of Three-Dimensional Objects Using Artificial Intelligence Applied to Digital Holographic Information
Digital holographically sensed 3D data processing, which is useful for AI-based vision, is demonstrated. Three prominent methods of learning from datasets such as sensed holograms, computationally retrieved intensity and phase from holograms forming concatenated intensity–phase (whole information) i...
Autores principales: | Mahesh R N, Uma, Nelleri, Anith |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920031/ https://www.ncbi.nlm.nih.gov/pubmed/36772135 http://dx.doi.org/10.3390/s23031095 |
Ejemplares similares
-
The Effectiveness of Multi-Label Classification and Multi-Output Regression in Social Trait Recognition
por: Farlessyost, Will, et al.
Publicado: (2021) -
Multi-objective optimization using artificial intelligence techniques
por: Mirjalili, Seyedali, et al.
Publicado: (2019) -
Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis
por: Krasoulis, Agamemnon, et al.
Publicado: (2020) -
Kernel-Free Quadratic Surface Regression for Multi-Class Classification
por: Wang, Changlin, et al.
Publicado: (2023) -
MVPA-Light: A Classification and Regression Toolbox for Multi-Dimensional Data
por: Treder, Matthias S.
Publicado: (2020)