Cargando…
Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU †
Heart rate variability (HRV) indexes are becoming useful in various applications, from better diagnosis and prevention of diseases to predicting stress levels. Typically, HRV indexes are retrieved from the heart’s electrical activity collected with an electrocardiographic signal (ECG). Heart-induced...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920051/ https://www.ncbi.nlm.nih.gov/pubmed/36772656 http://dx.doi.org/10.3390/s23031615 |
_version_ | 1784886975282544640 |
---|---|
author | Milena, Čukić Romano, Chiara De Tommasi, Francesca Carassiti, Massimiliano Formica, Domenico Schena, Emiliano Massaroni, Carlo |
author_facet | Milena, Čukić Romano, Chiara De Tommasi, Francesca Carassiti, Massimiliano Formica, Domenico Schena, Emiliano Massaroni, Carlo |
author_sort | Milena, Čukić |
collection | PubMed |
description | Heart rate variability (HRV) indexes are becoming useful in various applications, from better diagnosis and prevention of diseases to predicting stress levels. Typically, HRV indexes are retrieved from the heart’s electrical activity collected with an electrocardiographic signal (ECG). Heart-induced mechanical signals recorded from the body’s surface can be utilized to record the mechanical activity of the heart and, in turn, extract HRV indexes from interbeat intervals (IBIs). Among others, accelerometers and gyroscopes can be used to register IBIs from precordial accelerations and chest wall angular velocities. However, unlike electrical signals, the morphology of mechanical ones is strongly affected by body posture. In this paper, we investigated the feasibility of estimating the most common linear and non-linear HRV indexes from accelerometer and gyroscope data collected with a wearable skin-interfaced Inertial Measurement Unit (IMU) positioned at the xiphoid level. Data were collected from 21 healthy volunteers assuming two common postures (i.e., seated and lying). Results show that using the gyroscope signal in the lying posture allows accurate results in estimating IBIs, thus allowing extracting of linear and non-linear HRV parameters that are not statistically significantly different from those extracted from reference ECG. |
format | Online Article Text |
id | pubmed-9920051 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99200512023-02-12 Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU † Milena, Čukić Romano, Chiara De Tommasi, Francesca Carassiti, Massimiliano Formica, Domenico Schena, Emiliano Massaroni, Carlo Sensors (Basel) Article Heart rate variability (HRV) indexes are becoming useful in various applications, from better diagnosis and prevention of diseases to predicting stress levels. Typically, HRV indexes are retrieved from the heart’s electrical activity collected with an electrocardiographic signal (ECG). Heart-induced mechanical signals recorded from the body’s surface can be utilized to record the mechanical activity of the heart and, in turn, extract HRV indexes from interbeat intervals (IBIs). Among others, accelerometers and gyroscopes can be used to register IBIs from precordial accelerations and chest wall angular velocities. However, unlike electrical signals, the morphology of mechanical ones is strongly affected by body posture. In this paper, we investigated the feasibility of estimating the most common linear and non-linear HRV indexes from accelerometer and gyroscope data collected with a wearable skin-interfaced Inertial Measurement Unit (IMU) positioned at the xiphoid level. Data were collected from 21 healthy volunteers assuming two common postures (i.e., seated and lying). Results show that using the gyroscope signal in the lying posture allows accurate results in estimating IBIs, thus allowing extracting of linear and non-linear HRV parameters that are not statistically significantly different from those extracted from reference ECG. MDPI 2023-02-02 /pmc/articles/PMC9920051/ /pubmed/36772656 http://dx.doi.org/10.3390/s23031615 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Milena, Čukić Romano, Chiara De Tommasi, Francesca Carassiti, Massimiliano Formica, Domenico Schena, Emiliano Massaroni, Carlo Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU † |
title | Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU † |
title_full | Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU † |
title_fullStr | Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU † |
title_full_unstemmed | Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU † |
title_short | Linear and Non-Linear Heart Rate Variability Indexes from Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced IMU † |
title_sort | linear and non-linear heart rate variability indexes from heart-induced mechanical signals recorded with a skin-interfaced imu † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920051/ https://www.ncbi.nlm.nih.gov/pubmed/36772656 http://dx.doi.org/10.3390/s23031615 |
work_keys_str_mv | AT milenacukic linearandnonlinearheartratevariabilityindexesfromheartinducedmechanicalsignalsrecordedwithaskininterfacedimu AT romanochiara linearandnonlinearheartratevariabilityindexesfromheartinducedmechanicalsignalsrecordedwithaskininterfacedimu AT detommasifrancesca linearandnonlinearheartratevariabilityindexesfromheartinducedmechanicalsignalsrecordedwithaskininterfacedimu AT carassitimassimiliano linearandnonlinearheartratevariabilityindexesfromheartinducedmechanicalsignalsrecordedwithaskininterfacedimu AT formicadomenico linearandnonlinearheartratevariabilityindexesfromheartinducedmechanicalsignalsrecordedwithaskininterfacedimu AT schenaemiliano linearandnonlinearheartratevariabilityindexesfromheartinducedmechanicalsignalsrecordedwithaskininterfacedimu AT massaronicarlo linearandnonlinearheartratevariabilityindexesfromheartinducedmechanicalsignalsrecordedwithaskininterfacedimu |