Cargando…
A Delaunay Edges and Simulated Annealing-Based Integrated Approach for Mesh Router Placement Optimization in Wireless Mesh Networks
Wireless Mesh Networks (WMNs) can build a communications infrastructure using only routers (called mesh routers), making it possible to form networks over a wide area at low cost. The mesh routers cover clients (called mesh clients), allowing mesh clients to communicate with different nodes. Since t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920083/ https://www.ncbi.nlm.nih.gov/pubmed/36772090 http://dx.doi.org/10.3390/s23031050 |
Sumario: | Wireless Mesh Networks (WMNs) can build a communications infrastructure using only routers (called mesh routers), making it possible to form networks over a wide area at low cost. The mesh routers cover clients (called mesh clients), allowing mesh clients to communicate with different nodes. Since the communication performance of WMNs is affected by the position of mesh routers, the communication performance can be improved by optimizing the mesh router placement. In this paper, we present a Coverage Construction Method (CCM) that optimizes mesh router placement. In addition, we propose an integrated optimization approach that combine Simulated Annealing (SA) and Delaunay Edges (DE) in CCM to improve the performance of mesh router placement optimization. The proposed approach can build and provide a communication infrastructure by WMNs in disaster environments. We consider a real scenario for the placement of mesh clients in an evacuation area of Kurashiki City, Japan. From the simulation results, we found that the proposed approach can optimize the placement of mesh routers in order to cover all mesh clients in the evacuation area. Additionally, the DECCM-based SA approach covers more mesh clients than the CCM-based SA approach on average and can improve network connectivity of WMNs. |
---|