Cargando…
Ultra-Responsive MEMS Sensing Chip for Differential Thermal Analysis (DTA)
Ultra-responsive single-crystal silicon MEMS thermopiles for differential thermal analysis (DTA) are developed. Facilitated by a unique “microholes interetch and sealing (MIS)” technique, pairs of suspended thermopiles are batch fabricated in a differential form, with high-density (54 pairs) n-type/...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920126/ https://www.ncbi.nlm.nih.gov/pubmed/36772402 http://dx.doi.org/10.3390/s23031362 |
Sumario: | Ultra-responsive single-crystal silicon MEMS thermopiles for differential thermal analysis (DTA) are developed. Facilitated by a unique “microholes interetch and sealing (MIS)” technique, pairs of suspended thermopiles are batch fabricated in a differential form, with high-density (54 pairs) n-type/p-type single-crystal silicon thermocouples integrated within each thermopile (sample area ~0.045 mm(2)). The fabricated MEMS thermopile sensors exhibit outstanding power responsivity of 99.5 V/W and temperature responsivity of 27.8 mV/°C, which are more than 4 times higher than those reported for material thermal analysis. The high-responsivity MEMS DTA chips allow us to accurately measure the indium melting point at different heating rates of ~1–100 °C/s. We also perform DTA measurement of the dehydration process of CuSO(4)·5H(2)O and the crystals show three stages of losing water of crystallization before becoming anhydrous copper sulfate salt. Our high-performance, cost-effective MEMS sensing chips hold promise for rapid and accurate DTA characterization for a wide range of applications. |
---|