Cargando…
A Wi-Fi-Based Passive Indoor Positioning System via Entropy-Enhanced Deployment of Wi-Fi Sniffers
This study presents a Wi-Fi-based passive indoor positioning system (IPS) that does not require active collaboration from the user or additional interfaces on the device-under-test (DUT). To maximise the accuracy of the IPS, the optimal deployment of Wi-Fi Sniffers in the area of interest is crucial...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920231/ https://www.ncbi.nlm.nih.gov/pubmed/36772416 http://dx.doi.org/10.3390/s23031376 |
Sumario: | This study presents a Wi-Fi-based passive indoor positioning system (IPS) that does not require active collaboration from the user or additional interfaces on the device-under-test (DUT). To maximise the accuracy of the IPS, the optimal deployment of Wi-Fi Sniffers in the area of interest is crucial. A modified Genetic Algorithm (GA) with an entropy-enhanced objective function is proposed to optimize the deployment. These Wi-Fi Sniffers are used to scan and collect the DUT’s Wi-Fi received signal strength indicators (RSSIs) as Wi-Fi fingerprints, which are then mapped to reference points (RPs) in the physical world. The positioning algorithm utilises a weighted k-nearest neighbourhood (WKNN) method. Automated data collection of RSSI on each RP is achieved using a surveying robot for the Wi-Fi 2.4 GHz and 5 GHz bands. The preliminary results show that using only 20 Wi-Fi Sniffers as features for model training, the offline positioning accuracy is 2.2 m in terms of root mean squared error (RMSE). A proof-of-concept real-time online passive IPS is implemented to show that it is possible to detect the online presence of DUTs and obtain their RSSIs as online fingerprints to estimate their position. |
---|