Cargando…
NetAP-ML: Machine Learning-Assisted Adaptive Polling Technique for Virtualized IoT Devices
To maximize the performance of IoT devices in edge computing, an adaptive polling technique that efficiently and accurately searches for the workload-optimized polling interval is required. In this paper, we propose NetAP-ML, which utilizes a machine learning technique to shrink the search space for...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920277/ https://www.ncbi.nlm.nih.gov/pubmed/36772524 http://dx.doi.org/10.3390/s23031484 |
Sumario: | To maximize the performance of IoT devices in edge computing, an adaptive polling technique that efficiently and accurately searches for the workload-optimized polling interval is required. In this paper, we propose NetAP-ML, which utilizes a machine learning technique to shrink the search space for finding an optimal polling interval. NetAP-ML is able to minimize the performance degradation in the search process and find a more accurate polling interval with the random forest regression algorithm. We implement and evaluate NetAP-ML in a Linux system. Our experimental setup consists of a various number of virtual machines (2–4) and threads (1–5). We demonstrate that NetAP-ML provides up to 23% higher bandwidth than the state-of-the-art technique. |
---|