Cargando…
NetAP-ML: Machine Learning-Assisted Adaptive Polling Technique for Virtualized IoT Devices
To maximize the performance of IoT devices in edge computing, an adaptive polling technique that efficiently and accurately searches for the workload-optimized polling interval is required. In this paper, we propose NetAP-ML, which utilizes a machine learning technique to shrink the search space for...
Autores principales: | Park, Hyunchan, Go, Younghun, Lee, Kyungwoon, Hong, Cheol-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920277/ https://www.ncbi.nlm.nih.gov/pubmed/36772524 http://dx.doi.org/10.3390/s23031484 |
Ejemplares similares
-
Hands-Free Authentication for Virtual Assistants with Trusted IoT Device and Machine Learning
por: Hayashi, Victor Takashi, et al.
Publicado: (2022) -
IoT and ML approach for ornamental fish behaviour analysis
por: Patro, K. Suresh Kumar, et al.
Publicado: (2023) -
Compact and fast machine learning accelerator for IoT devices
por: Huang, Hantao, et al.
Publicado: (2018) -
A Polling-Based Transmission Scheme Using a Network Traffic Uniformity Metric for Industrial IoT Applications
por: Igarashi, Yuichi, et al.
Publicado: (2019) -
Sazgar IoT: A Device-Centric IoT Framework and Approximation Technique for Efficient and Scalable IoT Data Processing
por: Yavari, Ali, et al.
Publicado: (2023)