Cargando…
Online-Dynamic-Clustering-Based Soft Sensor for Industrial Semi-Supervised Data Streams
In the era of big data, industrial process data are often generated rapidly in the form of streams. Thus, how to process such sequential and high-speed stream data in real time and provide critical quality variable predictions has become a critical issue for facilitating efficient process control an...
Autores principales: | Wang, Yuechen, Jin, Huaiping, Chen, Xiangguang, Wang, Bin, Yang, Biao, Qian, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920279/ https://www.ncbi.nlm.nih.gov/pubmed/36772560 http://dx.doi.org/10.3390/s23031520 |
Ejemplares similares
-
Pseudo-Labeling Optimization Based Ensemble Semi-Supervised Soft Sensor in the Process Industry
por: Li, Youwei, et al.
Publicado: (2021) -
Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process
por: Zhang, Yan, et al.
Publicado: (2022) -
Industrial Semi-Supervised Dynamic Soft-Sensor Modeling Approach Based on Deep Relevant Representation Learning
por: Moreira de Lima, Jean Mário, et al.
Publicado: (2021) -
Semi-Supervised Clustering for Financial Risk Analysis
por: Han, Yihan, et al.
Publicado: (2021) -
Nonlinear Dynamic Soft Sensor Development with a Supervised
Hybrid CNN-LSTM Network for Industrial Processes
por: Zheng, Jiaqi, et al.
Publicado: (2022)