Cargando…
Region Anomaly Detection via Spatial and Semantic Attributed Graph in Human Monitoring †
This paper proposes a graph-based deep framework for detecting anomalous image regions in human monitoring. The most relevant previous methods, which adopt deep models to obtain salient regions with captions, focus on discovering anomalous single regions and anomalous region pairs. However, they can...
Autores principales: | Zhang, Kang, Fadjrimiratno, Muhammad Fikko, Suzuki, Einoshin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920296/ https://www.ncbi.nlm.nih.gov/pubmed/36772345 http://dx.doi.org/10.3390/s23031307 |
Ejemplares similares
-
Progressive Temporal-Spatial-Semantic Analysis of Driving Anomaly Detection and Recounting
por: Zhu, Rixing, et al.
Publicado: (2019) -
Fair Facial Attribute Classification via Causal Graph-Based Attribute Translation
por: Kang, Sunghun, et al.
Publicado: (2022) -
Hashing-based semantic relevance attributed knowledge graph embedding enhancement for deep probabilistic recommendation
por: Khan, Nasrullah, et al.
Publicado: (2022) -
GraphTS: Graph-represented time series for subsequence anomaly detection
por: Zarei, Roozbeh, et al.
Publicado: (2023) -
Auxiliary Graph for Attribute Graph Clustering
por: Li, Wang, et al.
Publicado: (2022)